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What is Machine Learning?

• Machine Learning (ML) studies systems that are trained from
data rather than being explicitly programmed.

• More formally what is under study is the process of inductive
inference which can be roughly described as:

1 Observe a phenomenon.
2 Construct a model of that phenomenon.
3 Make predictions using this model.

Fundamentals of Machine Learning 2 / 26



What is Machine Learning?

• Machine Learning (ML) studies systems that are trained from
data rather than being explicitly programmed.

• More formally what is under study is the process of inductive
inference which can be roughly described as:

1 Observe a phenomenon.
2 Construct a model of that phenomenon.
3 Make predictions using this model.

Fundamentals of Machine Learning 2 / 26



What is Machine Learning?

• Machine Learning (ML) studies systems that are trained from
data rather than being explicitly programmed.

• More formally what is under study is the process of inductive
inference which can be roughly described as:

1 Observe a phenomenon.
2 Construct a model of that phenomenon.
3 Make predictions using this model.

Fundamentals of Machine Learning 2 / 26



What is Machine Learning?

• Machine Learning (ML) studies systems that are trained from
data rather than being explicitly programmed.

• More formally what is under study is the process of inductive
inference which can be roughly described as:

1 Observe a phenomenon.
2 Construct a model of that phenomenon.
3 Make predictions using this model.

Fundamentals of Machine Learning 2 / 26



What is Machine Learning?

• Machine Learning (ML) studies systems that are trained from
data rather than being explicitly programmed.

• More formally what is under study is the process of inductive
inference which can be roughly described as:

1 Observe a phenomenon.
2 Construct a model of that phenomenon.
3 Make predictions using this model.

Fundamentals of Machine Learning 2 / 26



What is Machine Learning?

• Machine Learning (ML) studies systems that are trained from
data rather than being explicitly programmed.

• More formally what is under study is the process of inductive
inference which can be roughly described as:

1 Observe a phenomenon.
2 Construct a model of that phenomenon.
3 Make predictions using this model.

The goal of Machine Learning is to automate this process.
(and the goal of Learning Theory is to formalize it)
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What is Machine Learning?

Machine Learning represents a set of methods that automatically
extract features from data in order to solve prediction tasks like:

• Forecasting (e.g. Energy Demand, Finances, Earthquakes)

• Classification (e.g. Cancer Diagnosis, Credit Risk Assessment)

• Detecting Anomalies (e.g. Security, Frauds, Epidemics, Virus Mutations)

• Decision Making (e.g. Robotics, Trading, AI)

• etc... Recommendation Systems, Self-driving cars, Machine Translation, Virtual
Assistants,...
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Learning from data:

• How do we transform this concept of learning into an
explicit/practical set of steps?

• What are the factors involved?

- Statistical Inference (or a version of it) is how you do it -

Remark: For tasks like Reinforcement Learning different frameworks
might work better.
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How do we perceive data?

1 - Observing the phenomenon

• In Statistics we call the set where our
data lives in as Population.

• This set is represented as a probability
space (ref.)

(Z,Z, p).

• Our data set D = {Zi}ni=1 ⊆ S is a
collection of i.i.d. random variables
Zi ∼ p.
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What kind of problem?

1 - Observing the phenomenon
When designing learning algorithms, is common to distinguish
between two main types:

• Supervised Learning: We are interested in the underlying predictive
relationship between our labelled data set {(Xi, Yi)}ni=1.

• Unsupervised Learning: Find interesting structure in unlabelled data.
Which can mean estimating the density p(Z) itself.
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Supervised Learning

2 - Constructing (learning) the model
We now focus on the supervised type:

Observation # fixed acidity density … res. sugar … pH Quality

1 7.4 0.9978 … 1.9 … 3.51 5
2 7.8 0.9968 … 2.6 … 3.2 5
...

...
...

...
...

...
...

232 5.2 0.9927 … 1.6 … 3.54 7
...

...
...

...
...

...
...

1599 6 0.99549 … 3.6 … 3.39 6

Table: Wine quality data set [link]

By observing a collection of examples {(Xi, Yi)}ni=1 we want to construct a predictor
ŷ : X → Y that makes good predictions of Y given X (on samples that are likely to
appear in practice).
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How do we deal with uncertainty?

2 - Constructing (learning) the model
To obtain generalization and deal with noise sensitivity is often necessary to model
the problem in the probabilistic setting as

ŷ(x) = “best guess” = argmax
y∈Y

p(y | x). (1)

Figure: For each point x ∈ X there is a distribution of likely outputs p(y | x).
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Supervised Learning

2 - Constructing (learning) the model
The Naive objective is usually unfeasible - No Free Lunch [link]) -
How do we build a learning algorithm that given a set of data points
can learn a consistent estimator?

ŷ :
∞∪
n=1

(X × Y)n → F . (2)

Where F ⊆ YX is the hypothesis class, a set of possible predictors.

The choice of F is the first step into solving this question.
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Supervised Learning

Example 1: Linear Regression
Salary as a function of the number of years of experience

Goal: Finding the best ŷ(·) ∈ F that can predict well new data.

ŷ(x) = ax+ b ↔ F = {“all linear models”} ≈ R2

In this case this is the same as finding the best parameters (a, b) ∈ R2, such
that the line fits well the data.
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Supervised Learning

Parameter estimation
Parameters are real values that control the behavior of a model.

F = {fθ : X → Y | θ ∈ Θ}

And therefore the problem translates into finding the best parameter θ̂
given a data set.

Question:
How do we find a good model?
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Empirical Risk Minimization

Loss function

• We choose a loss function ℓ : F × Z → R+ (or ℓ : Y × Y → R+).

• Which should quantify the loss of considering hypothesis f ∈ F
and observing example z ∈ Z .

• Usually Y possess a metric and we take the loss ℓ(ŷ, y) to be the
distance between y and ŷ(x).
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Empirical Risk Minimization

Risk Function
Def: We define the (Population) risk associated to f ∈ F .

R(f) = E(X,Y)∼p[ℓ(f(X), Y)]. (4)

From this analogy, our ideal estimator is therefore, the one of minimum risk

f∗ = argmin
f∈F

R(f). (5)

Remark: In a parametric setting we define the risk on the parameter θ ∈ Θ

R(θ) = E(X,Y)∼p[ℓ(ŷ(X, θ), Y)]. (6)
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Empirical Risk Minimization

Regression setting (Y = R)
Using the squared error loss ℓ(ŷ, y) = (ŷ− y)2, the associated risk becomes

R(f) = E(f(X)− Y)2. (7)

The minimizer in this case is the conditional expectation

f∗(x) = E[Y | X = x]. (8)
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Empirical Risk Minimization

Empirical Risk
Since the distribution p is unknown we can’t actually compute the risk
function in practice.

• Def: We define the empirical risk as

Rn(f) =
1

n

n∑
i=1

ℓ(f,Zi) (9)

where the Zi = (Xi, Yi) are the examples in our data set.

• We choose an estimator ŷn : Zn ∈ F that minimizes the empirical risk

ŷn = argmin
f∈F

Rn(f) (10)

We call this strategy empirical risk minimization (ERM).
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Linear Regression

• We assume X = Rd, Y = R and a ypothesis class consisting only of
linear models

F =

{
ŷ ∈ YX : ∃θ ∈ Rd+1 s.t. ŷ(x) = ŷ(x, θ) = θ0 +

d∑
i=1

θixi, ∀x ∈ X

}
(11)

• Given a dataset D = {(xi, yi)}ni=1 with xi = (xi1, xi2, . . . , xid) we are
interested in finding a parameter vector θ̂ that best approximates the
relation of y and x by a linear model.
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Linear Regression

• We see that ERM is equivalent to the method of least squares:

Rn(θ) =
∑n

i=1(yi − ŷ(xi, θ))2

=
∑n

i=1(yi − θ0 −
∑d

j=1 θjxij)
2.

(12)

• We can rewrite this sum using matrix notation as

Rn(θ) = (y − Xθ)T(y − Xθ). (13)
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Linear Regression

• We can minimize this quadratic equation by differentiating it with
respect to θ

∂

∂θ
Rn(θ) = −2XT(y − Xθ) (14)

∂2

∂2θ
Rn(θ) = −2XTX. (15)

• When XTX is positive definite we obtain the unique solution

θ̂ = (XTX)−1XTy. (16)
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Generalization

• We emphasize that training learning models differ from a pure
traditional optimization task. In most cases the performance measure
its defined over a test set of examples, that are not experienced during
training, this is a way of determining if our model is generalizing for
instances outside of the data set.

• One way of measuring generalization is by the excess expected risk

R(fD)− R(f∗)

or even, since R(fD) is random,

ED[R(fD)− R(f∗)]
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Generalization

• Consistency can written as

lim
n→∞

ED[R(fD)− R(f∗)] = 0 (17)

• Learning rates: For all ε > 0 if n ≥ n(ε), then

ED[R(fD)− R(f∗)] ≤ ε

n(ε) is called sample complexity.
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Generalization

How to design a good learning algorithm?

• Fitting: An estimator should fit data well.

• Stability: An estimator should be stable, it should not change much if
data change slightly
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Overfitting

How to design a good learning algorithm?

• We say an algorithm overfits when it fits the data, but fails to capture
the structure for generalization.

• We say the algorithm underfits when it is stable while disregarding the
data.
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Capacity and Likelihood

• How do we decide between two hypothesis h and h̃?
The principle of Occam’s razor says we always prefer the
simplest model that fits well the data.

• The likelihood of seeing the sample D of size n assuming the
hypothesis h is

p(D | h) =
[

1

size(h)

]n
(18)

assuming that the samples are independent.
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