Fundamentals of Machine Learning

Daniel Yukimura

yukimura@impa.br

August 22, 2018

- Machine Learning (ML) studies systems that are trained from data rather than being explicitly programmed.
- More formally what is under study is the process of inductive inference which can be roughly described as:
 - 🕦 Observe a phenomenon.
 - Construct a model of that phenomenon.
 - Make predictions using this model.

- Machine Learning (ML) studies systems that are trained from data rather than being explicitly programmed.
- More formally what is under study is the process of inductive inference which can be roughly described as:
 - Observe a phenomenon.
 - Construct a model of that phenomenon.
 - 3 Make predictions using this model.

- Machine Learning (ML) studies systems that are trained from data rather than being explicitly programmed.
- More formally what is under study is the process of inductive inference which can be roughly described as:
 - 1 Observe a phenomenon.
 - Construct a model of that phenomenon.
 - Make predictions using this model.

- Machine Learning (ML) studies systems that are trained from data rather than being explicitly programmed.
- More formally what is under study is the process of inductive inference which can be roughly described as:
 - 1 Observe a phenomenon.
 - 2 Construct a model of that phenomenon.
 - Make predictions using this model.

- Machine Learning (ML) studies systems that are trained from data rather than being explicitly programmed.
- More formally what is under study is the process of inductive inference which can be roughly described as:
 - 1 Observe a phenomenon.
 - 2 Construct a model of that phenomenon.
 - 3 Make predictions using this model.

- Machine Learning (ML) studies systems that are trained from data rather than being explicitly programmed.
- More formally what is under study is the process of inductive inference which can be roughly described as:
 - 1 Observe a phenomenon.
 - 2 Construct a model of that phenomenon.
 - 3 Make predictions using this model.

The goal of Machine Learning is to *automate* this process. (and the goal of Learning Theory is to *formalize* it)

Machine Learning represents a set of methods that automatically extract **features** from data in order to solve **prediction** tasks like:

- Forecasting (e.g. Energy Demand, Finances, Earthquakes)
- Classification (e.g. Cancer Diagnosis, Credit Risk Assessment)
- Detecting Anomalies (e.g. Security, Frauds, Epidemics, Virus Mutations)
- Decision Making (e.g. Robotics, Trading, AI)
- etc... Recommendation Systems, Self-driving cars, Machine Translation, Virtual Assistants,...

Learning from data:

- How do we transform this concept of **learning** into an **explicit/practical** set of steps?
- What are the factors involved?
- Statistical Inference (or a version of it) is how you do it -

Remark: For tasks like Reinforcement Learning different frameworks might work better.

How do we perceive data?

1 - Observing the phenomenon

- In Statistics we call the set where our data lives in as **Population**.
- This set is represented as a probability space (ref.)
- Our data set $\mathcal{D} = \{Z_i\}_{i=1}^n \subseteq S$ is a collection of i.i.d. random variables $Z_i \sim p$.

How do we perceive data?

1 - Observing the phenomenon

- In Statistics we call the set where our data lives in as **Population**.
- This set is represented as a probability space (ref.)

 $(\mathcal{Z},\mathfrak{Z},p).$

Our data set D = {Z_i}ⁿ_{i=1} ⊆ S is a collection of i.i.d. random variables Z_i ~ p.

How do we perceive data?

1 - Observing the phenomenon

- In Statistics we call the set where our data lives in as **Population**.
- This set is represented as a probability space (ref.)

 $(\mathcal{Z},\mathfrak{Z},p).$

Our data set D = {Z_i}ⁿ_{i=1} ⊆ S is a collection of i.i.d. random variables Z_i ~ p.

What kind of problem?

1 - Observing the phenomenon

When designing learning algorithms, is common to distinguish between two main types:

- Supervised Learning: We are interested in the underlying predictive relationship between our labelled data set $\{(X_i, Y_i)\}_{i=1}^n$.
- Unsupervised Learning: Find *interesting structure* in unlabelled data. Which can mean estimating the density p(Z) itself.

What kind of problem?

1 - Observing the phenomenon

When designing learning algorithms, is common to distinguish between two main types:

- Supervised Learning: We are interested in the underlying predictive relationship between our labelled data set $\{(X_i, Y_i)\}_{i=1}^n$.
- Unsupervised Learning: Find *interesting structure* in unlabelled data. Which can mean estimating the density p(Z) itself.

2 - Constructing (learning) the model We now focus on the **supervised** type:

Observation #	fixed acidity	density		res. sugar		рН	Quality
1	7.4	0.9978		1.9		3.51	5
2	7.8	0.9968		2.6		3.2	5
		•					
:	:	:	:	:	:	:	
232	5.2	0.9927		1.6		3.54	7
:	:		:	:	:	:	
-			:	:		:	
1599	6	0.99549		3.6		3.39	6

Table: Wine quality data set [link]

By observing a collection of examples $\{(X_i, Y_i)\}_{i=1}^n$ we want to construct a **predictor** $\hat{y} : \mathcal{X} \to \mathcal{Y}$ that makes good predictions of Y given X (on samples that are likely to appear in practice).

2 - Constructing (learning) the model We now focus on the **supervised** type:

Observation #	fixed acidity	density		res. sugar		pН	Quality
	X (1)	X(2)		X(j)		X(d)	Y
1	7.4	0.9978		1.9		3.51	5
2	7.8	0.9968		2.6		3.2	5
:	:	:	:	:	:	:	:
	•	•		•		•	•
232	5.2	0.9927		1.6		3.54	7
:	:	:	:	:	:	•	:
:		:	:	:	:	-	:
1599	6	0.99549		3.6		3.39	6

Table: Wine quality data set [link]

By observing a collection of examples $\{(X_i, Y_i)\}_{i=1}^n$ we want to construct a **predictor** $\hat{y} : \mathcal{X} \to \mathcal{Y}$ that makes good predictions of Y given X (on samples that are likely to appear in practice).

How do we deal with uncertainty?

2 - Constructing (learning) the model

To obtain **generalization** and deal with **noise sensitivity** is often necessary to model the problem in the probabilistic setting as

$$\hat{y}(x) = \text{``best guess''} = \operatorname*{argmax}_{y \in \mathcal{Y}} p(y \mid x). \tag{1}$$

Figure: For each point $x \in \mathcal{X}$ there is a distribution of likely outputs p(y | x).

2 - Constructing (learning) the model

The *Naive* objective is usually unfeasible - *No Free Lunch* [link]) - How do we build a **learning algorithm** that given a set of data points can learn a **consistent estimator**?

$$\hat{y}: \bigcup_{n=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{F}.$$
 (2)

Where $\mathcal{F} \subseteq \mathcal{Y}^{\mathcal{X}}$ is the **hypothesis class**, a set of possible predictors.

The choice of \mathcal{F} is the first step into solving this question.

2 - Constructing (learning) the model

The *Naive* objective is usually unfeasible - *No Free Lunch* [link]) - How do we build a **learning algorithm** that given a set of data points can learn a **consistent estimator**?

$$\hat{y}: \bigcup_{n=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{F}.$$
 (3)

Where $\mathcal{F} \subseteq \mathcal{Y}^{\mathcal{X}}$ is the **hypothesis class**, a set of possible predictors.

The choice of \mathcal{F} is the first step into solving this question.

Example 1: Linear Regression

Salary as a function of the number of years of experience

<u>Goal</u>: Finding the best $\hat{y}(\cdot) \in \mathcal{F}$ that can predict well new data.

$$\hat{y}(x) = ax + b \quad \leftrightarrow \quad \mathcal{F} = \{\text{``all linear models''}\} pprox \mathbb{R}^2$$

In this case this is the same as finding the best parameters $(a, b) \in \mathbb{R}^2$, such that the line fits well the data. *from this tutorial*

Fundamentals of Machine Learning

Parameter estimation

Parameters are real values that control the behavior of a model.

 $\mathcal{F} = \{ f_{\theta} : \mathcal{X} \to \mathcal{Y} \mid \theta \in \Theta \}$

And therefore the problem translates into finding the best parameter $\hat{\theta}$ given a data set.

Question: How do we find a good model?

Empirical Risk Minimization

Loss function

- We choose a loss function $\ell : \mathcal{F} \times \mathcal{Z} \to \mathbb{R}^+$ (or $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$).
- Which should quantify the loss of considering hypothesis $f \in \mathcal{F}$ and observing example $z \in \mathcal{Z}$.
- Usually $\mathcal Y$ possess a metric and we take the loss $\ell(\hat y, y)$ to be the distance between y and $\hat y(x)$.

Empirical Risk Minimization

Risk Function

Def: We define the (Population) **risk** associated to $f \in \mathcal{F}$.

$$R(f) = \mathbb{E}_{(X,Y) \sim p}[\ell(f(X), Y)].$$
(4)

From this analogy, our ideal estimator is therefore, the one of minimum risk

$$f^* = \operatorname*{argmin}_{f \in \mathcal{F}} R(f).$$
(5)

Remark: In a parametric setting we define the risk on the parameter $\theta \in \Theta$

$$R(\theta) = \mathbb{E}_{(X,Y) \sim p}[\ell(\hat{y}(X,\theta),Y)].$$
(6)

Regression setting ($\mathcal{Y} = \mathbb{R}$)

Using the squared error loss $\ell(\hat{y}, y) = (\hat{y} - y)^2$, the associated risk becomes

$$R(f) = \mathbb{E}(f(X) - Y)^2.$$
(7)

The minimizer in this case is the conditional expectation

$$f^*(x) = \mathbb{E}[Y \mid X = x].$$
(8)

Empirical Risk Minimization

Empirical Risk

Since the distribution *p* is unknown we can't actually compute the risk function in practice.

• Def: We define the empirical risk as

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f, Z_i)$$
(9)

where the $Z_i = (X_i, Y_i)$ are the examples in our data set.

• We choose an estimator $\hat{y}_n : \mathcal{Z}^n \in \mathcal{F}$ that minimizes the empirical risk

$$\hat{y}_n = \operatorname*{argmin}_{f \in \mathcal{F}} R_n(f) \tag{10}$$

We call this strategy empirical risk minimization (ERM).

Empirical Risk Minimization

Empirical Risk

Since the distribution *p* is unknown we can't actually compute the risk function in practice.

• Def: We define the empirical risk as

$$R_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f, Z_i)$$
(9)

where the $Z_i = (X_i, Y_i)$ are the examples in our data set.

• We choose an estimator $\hat{y}_n : \mathcal{Z}^n \in \mathcal{F}$ that minimizes the empirical risk

$$\hat{y}_n = \operatorname*{argmin}_{f \in \mathcal{F}} R_n(f) \tag{10}$$

We call this strategy empirical risk minimization (ERM).

• We assume $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$ and a ypothesis class consisting only of linear models

$$\mathcal{F} = \left\{ \hat{y} \in \mathcal{Y}^{\mathcal{X}} : \exists \theta \in \mathbb{R}^{d+1} \text{ s.t. } \hat{y}(x) = \hat{y}(x,\theta) = \theta_0 + \sum_{i=1}^d \theta_i x_i, \, \forall x \in \mathcal{X} \right\}$$
(11)

• Given a dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ with $x_i = (x_{i1}, x_{i2}, \dots, x_{id})$ we are interested in finding a parameter vector $\hat{\theta}$ that best approximates the relation of y and x by a linear model.

• We assume $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$ and a ypothesis class consisting only of linear models

$$\mathcal{F} = \left\{ \hat{y} \in \mathcal{Y}^{\mathcal{X}} : \exists \theta \in \mathbb{R}^{d+1} \text{ s.t. } \hat{y}(x) = \hat{y}(x,\theta) = \theta_0 + \sum_{i=1}^d \theta_i x_i, \, \forall x \in \mathcal{X} \right\}$$
(11)

• Given a dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ with $x_i = (x_{i1}, x_{i2}, \dots, x_{id})$ we are interested in finding a parameter vector $\hat{\theta}$ that best approximates the relation of y and x by a linear model.

• We see that ERM is equivalent to the method of least squares:

$$R_{n}(\theta) = \sum_{i=1}^{n} (y_{i} - \hat{y}(x_{i}, \theta))^{2}$$

= $\sum_{i=1}^{n} (y_{i} - \theta_{0} - \sum_{i=1}^{d} \theta_{i} x_{ij})^{2}.$ (12)

We can rewrite this sum using matrix notation as

$$R_n(\theta) = (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta).$$
(13)

• We see that ERM is equivalent to the method of least squares:

$$R_{n}(\theta) = \sum_{i=1}^{n} (y_{i} - \hat{y}(x_{i}, \theta))^{2}$$

= $\sum_{i=1}^{n} (y_{i} - \theta_{0} - \sum_{j=1}^{d} \theta_{j} x_{ij})^{2}.$ (12)

• We can rewrite this sum using matrix notation as

$$R_n(\theta) = (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta).$$
(13)

- We can minimize this quadratic equation by differentiating it with respect to $\boldsymbol{\theta}$

$$\frac{\partial}{\partial \theta} R_n(\theta) = -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\theta)$$
(14)

$$\frac{\partial^2}{\partial^2 \theta} \mathbf{R}_n(\theta) = -2\mathbf{X}^T \mathbf{X}.$$
(15)

When X^TX is positive definite we obtain the unique solution

$$\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$
 (16)

- We can minimize this quadratic equation by differentiating it with respect to $\boldsymbol{\theta}$

$$\frac{\partial}{\partial \theta} R_n(\theta) = -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\theta)$$
(14)

$$\frac{\partial^2}{\partial^2 \theta} R_n(\theta) = -2\mathbf{X}^T \mathbf{X}.$$
(15)

- When $\mathbf{X}^{T}\mathbf{X}$ is positive definite we obtain the unique solution

$$\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$
(16)

- We emphasize that training learning models differ from a pure traditional optimization task. In most cases the performance measure its defined over a **test set** of examples, that are not experienced during training, this is a way of determining if our model is generalizing for instances outside of the data set.
- One way of measuring generalization is by the excess expected risk

 $R(f_{\mathcal{D}}) - R(f^*)$

or even, since $R(f_D)$ is random,

 $\mathbb{E}_{\mathcal{D}}[R(f_{\mathcal{D}}) - R(f^*)]$

- We emphasize that training learning models differ from a pure traditional optimization task. In most cases the performance measure its defined over a **test set** of examples, that are not experienced during training, this is a way of determining if our model is generalizing for instances outside of the data set.
- One way of *measuring* generalization is by the excess expected risk

$$R(f_{\mathcal{D}}) - R(f^*)$$

or even, since $R(f_D)$ is random,

$$\mathbb{E}_{\mathcal{D}}[R(f_{\mathcal{D}}) - R(f^*)]$$

• Consistency can written as

$$\lim_{n \to \infty} \mathbb{E}_{\mathcal{D}}[R(f_{\mathcal{D}}) - R(f^*)] = 0$$
(17)

• Learning rates: For all $\varepsilon > 0$ if $n \ge n(\varepsilon)$, then

 $\mathbb{E}_{\mathcal{D}}[R(f_{\mathcal{D}}) - R(f^*)] \leq \varepsilon$

 $n(\varepsilon)$ is called sample complexity.

• Consistency can written as

$$\lim_{n \to \infty} \mathbb{E}_{\mathcal{D}}[R(f_{\mathcal{D}}) - R(f^*)] = 0$$
(17)

• Learning rates: For all $\varepsilon > 0$ if $n \ge n(\varepsilon)$, then

$$\mathbb{E}_{\mathcal{D}}[\mathbf{R}(\mathbf{f}_{\mathcal{D}}) - \mathbf{R}(\mathbf{f}^*)] \leq \varepsilon$$

 $n(\varepsilon)$ is called sample complexity.

- Fitting: An estimator should fit data well.
- **Stability:** An estimator should be stable, it should not change much if data change slightly

- Fitting: An estimator should fit data well.
- **Stability:** An estimator should be stable, it should not change much if data change slightly

Overfitting

- We say an algorithm **overfits** when it fits the data, but fails to capture the structure for generalization.
- We say the algorithm **underfits** when it is stable while disregarding the data.

Overfitting

- We say an algorithm **overfits** when it fits the data, but fails to capture the structure for generalization.
- We say the algorithm **underfits** when it is stable while disregarding the data.

Capacity and Likelihood

- How do we decide between two hypothesis *h* and *h*? The principle of **Occam's razor** says we always prefer the *simplest* model that fits well the data.
- The **likelihood** of seeing the sample \mathcal{D} of size *n* assuming the hypothesis *h* is

$$p(\mathcal{D} \mid h) = \left[\frac{1}{\operatorname{size}(h)}\right]^n \tag{18}$$

assuming that the samples are independent.