Neural Networks: Part I
 Fundamentals

Daniel Yukimura

yukimura@impa.br
September 4, 2018

Neural Networks I: Fundamentals

Goal: Learn a Parametric Function.

- $\theta \in \Theta$: function parameters (these are learned).
- \mathcal{X} : input space.
- Y: outcome space.

The Perceptron

The Fundamental Building Block of Deep Learning

The Perceptron

The Fundamental Building Block of Deep Learning

Processing units biologically inspired in neurons.

- There is no clear correspondence between Deep Learning and how the human brain works!

The Perceptron

Model: A parametric function $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$, given by

- activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ (usually non-linear).
- parameters: $w=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{R}^{k}$ and $b \in \mathbb{R}$

The Perceptron

Model: A parametric function $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$, given by Is useful to look at it as a feedforward flow!

$$
\phi(x)=\sigma\left(\sum_{i=1}^{k} w_{i} x_{i}+b\right)
$$

- activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ (usually non-linear).
- parameters: $w=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{R}^{k}$ and $b \in \mathbb{R}$

The Perceptron

Model: A parametric function $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$, given by Is useful to look at it as a feedforward flow!

- activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ (usually non-linear).
- parameters: $w=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{R}^{k}$ and $b \in \mathbb{R}$

The Perceptron

Model: A parametric function $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$, given by Is useful to look at it as a feedforward flow!

$$
\phi(x)=\sigma\left(\sum_{i=1}^{k} w_{i} x_{i}+b\right)
$$

- activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ (usually non-linear).
- parameters: $w=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{R}^{k}$ and $b \in \mathbb{R}$

The Perceptron

Model: A parametric function $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$, given by Is useful to look at it as a feedforward flow!

$$
\phi(x)=\sigma\left(\sum_{i=1}^{k} w_{i} x_{i}+b\right)
$$

- activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ (usually non-linear).
- parameters: $w=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{R}^{k}$ and $b \in \mathbb{R}$

The Perceptron

Model: A parametric function $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$, given by Is useful to look at it as a feedforward flow!

$$
\phi(x)=\sigma\left(\sum_{i=1}^{k} w_{i} x_{i}+b\right)
$$

- activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ (usually non-linear).
- parameters: $w=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{R}^{k}$ and $b \in \mathbb{R}$

The Perceptron

Reassessing Linear Models:

The addition of an activation function is the first step on rising model capacity.

The Perceptron

Reassessing Linear Models:

The addition of an activation function is the first step on rising model capacity.

The Perceptron

Reassessing Linear Models:

The addition of an activation function is the first step on rising model capacity.

The Perceptron

Common Activation Functions

Rectified Linear Unit (ReLU)

$$
\sigma(z)=\max (0, z)
$$

Sigmoid Function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

Hyperbolic Tangent

$$
\sigma(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}
$$

The Perceptron

Example: Binary Classification/Logistic Regression

The Perceptron was proposed as a model for binary classification. Originally it used the step function as activation.

The Perceptron

Example: Binary Classification/Logistic Regression

The Perceptron was proposed as a model for binary classification. Originally it used the step function as activation.

Is hard to learn without differentiability!

The Perceptron

Example: Binary Classification/Logistic Regression

In logistic regression we model the posterior distribution $p(y \mid x)$ by smoothly squeezing the linear model into a probability distribution.

$$
\begin{aligned}
p_{w}(y=1 \mid x) & =\operatorname{sigm}\left(w^{T} x\right) \\
& =\frac{1}{1+e^{-w^{T} x}}
\end{aligned}
$$

meaning: The probability that x belongs to the class 1 .

The Perceptron

Example: The XOR function

- The Perceptron is unnable to learn the exclusive or (XOR) function!
- The classes can't be separated by half-spaces (linear models).

x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	0

Table: $y=x_{1} \oplus x_{2}$

Neural Networks

How to combine neurons to build more expressive models?

 Feedforward Neural Network (FNN): We combine neurons layerwise as vertices of a directed graph.

$$
\begin{aligned}
& h_{j}=\sigma\left(\sum_{i=1}^{n_{0}} w_{i, j}^{(1)} x_{i}+b_{j}\right) \\
& \text { - } y_{k}=\sum_{j=1}^{n_{1}} w_{j, k}^{(2)} h_{i}
\end{aligned}
$$

Neural Networks

How to combine neurons to build more expressive models?

 Feedforward Neural Network (FNN): We combine neurons layerwise as vertices of a directed graph.

- $h_{j}=\sigma\left(\sum_{i=1}^{n_{0}} w_{i, j}^{(1)} x_{i}+b_{j}\right)$
- $y_{k}=\sum_{j=1}^{n_{1}} w_{j, k}^{(2)} h_{i}$
- Forward propagation

Neural Networks

How to combine neurons to build more expressive models?

 Feedforward Neural Network (FNN): We combine neurons layerwise as vertices of a directed graph.

- $h_{j}=\sigma\left(\sum_{i=1}^{n_{0}} w_{i, j}^{(1)} x_{i}+b_{j}\right)$
- $y_{k}=\sum_{j=1}^{n_{1}} w_{j, k}^{(2)} h_{i}$
- Forward propagation

Neural Networks

How to combine neurons to build more expressive models?

 Feedforward Neural Network (FNN): We combine neurons layerwise as vertices of a directed graph.

- $h_{j}=\sigma\left(\sum_{i=1}^{n_{0}} w_{i, j}^{(1)} x_{i}+b_{j}\right)$
- $y_{k}=\sum_{j=1}^{n_{1}} w_{j, k}^{(2)} h_{i}$
- Forward propagation

Neural Networks

How to combine neurons to build more expressive models?

 Feedforward Neural Network (FNN): We combine neurons layerwise as vertices of a directed graph.

- $h_{j}=\sigma\left(\sum_{i=1}^{n_{0}} w_{i, j}^{(1)} x_{i}+b_{j}\right)$
- $y_{k}=\sum_{j=1}^{n_{1}} w_{j, k}^{(2)} h_{i}$
- Forward propagation

Neural Networks

How to combine neurons to build more expressive models?

 Feedforward Neural Network (FNN): We combine neurons layerwise as vertices of a directed graph.

- $h_{j}=\sigma\left(\sum_{i=1}^{n_{0}} w_{i, j}^{(1)} x_{i}+b_{j}\right)$
- $y_{k}=\sum_{j=1}^{n_{1}} w_{j, k}^{(2)} h_{i}$
- Forward propagation

Neural Networks

How to combine neurons to build more expressive models?

 Feedforward Neural Network (FNN): We combine neurons layerwise as vertices of a directed graph.

- $h=\sigma\left(W^{(1)^{T}}{ }_{x}+b\right)$
- $y=W^{(2)^{T}} h$
- Matrix notation is useful!

Neural Networks

How to combine neurons to build more expressive models?

 Feedforward Neural Network (FNN): We combine neurons layerwise as vertices of a directed graph.

$$
\begin{aligned}
& \text { - } h=\sigma\left(W^{(1)^{T}} x+b\right) \\
& \text { - } y=W^{(2)^{T}} h
\end{aligned}
$$

- Universal Approximation Theorem: Given enough neurons in a hidden layer, and a non-linear increasing activation function, one can approximate any Borel measurable function (see [ref]).

Neural Networks

Do we need more layers?

- Using more layers seems to allow more capacity while using fewer neurons, see [ref].
- There are many cases of success by using more layers.
- Deeper networks are harder to train!

Neural Networks

Do we need more layers?

- Using more layers seems to allow more capacity while using fewer neurons, see [ref].
- There are many cases of success by using more layers.
- Deeper networks are harder to train!

Neural Networks

Do we need more layers?

- Using more layers seems to allow more capacity while using fewer neurons, see [ref].
- There are many cases of success by using more layers.
- Deeper networks are harder to train!

Neural Networks

Do we need more layers?

- $h^{(0)}=x, h^{(\ell)}=\sigma\left(W^{(\ell)^{T}} h^{(\ell-1)}+b^{(\ell)}\right), \ell \in[L-1]$
- $\hat{y}=f(x, \theta)=W^{(L)^{T}} h^{(L-1)}$ (sometimes $\hat{y}=\sigma(\ldots)$).
- We denote $\theta_{\ell}=\left(\boldsymbol{W}^{(\ell)}, \boldsymbol{b}^{(\ell)}\right)$ the parameters of layer ℓ, and $\theta=\left(\theta_{1}, \ldots, \theta_{L}\right)$

Risk Minimization

Recall:

We want to find the network weights that achieve the lowest risk value.

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta \in \Theta}{\operatorname{argmin}} R_{n}(\theta) \\
& =\underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}, \theta\right), y_{i}\right)
\end{aligned}
$$

Example: For L_{2} regression we have

$$
R_{n}(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left\|f\left(x_{i}, \theta\right)-y_{i}\right\|_{2}^{2}
$$

Maximum Likelihood Estimation

- When modelling posterior distributions $p_{\theta}(y \mid x)$ is useful to look at the likelihood function

$$
\mathcal{L}_{n}(\theta)=p_{\theta}(\mathcal{D})=\prod_{i=1}^{n} p_{\theta}\left(x_{i}, y_{i}\right)
$$

- Maximizing $\mathcal{L}_{n}(\theta)$ means finding p_{θ} that best represents the data.
- But, in the supervised problem we can consider the alternative form

Maximum Likelihood Estimation

- When modelling posterior distributions $p_{\theta}(y \mid x)$ is useful to look at the likelihood function

$$
\mathcal{L}_{n}(\theta)=p_{\theta}(\mathcal{D})=\prod_{i=1}^{n} p_{\theta}\left(x_{i}, y_{i}\right)
$$

- Maximizing $\mathcal{L}_{n}(\theta)$ means finding p_{θ} that best represents the data.
- But, in the supervised problem we can consider the alternative form

Maximum Likelihood Estimation

- When modelling posterior distributions $p_{\theta}(y \mid x)$ is useful to look at the likelihood function

$$
\mathcal{L}_{n}(\theta)=p_{\theta}(\mathcal{D})=\prod_{i=1}^{n} p_{\theta}\left(x_{i}, y_{i}\right)
$$

- Maximizing $\mathcal{L}_{n}(\theta)$ means finding p_{θ} that best represents the data.
- But, in the supervised problem we can consider the alternative form

$$
\mathcal{L}_{n}(\theta)=\prod_{i=1}^{n} p_{\theta}\left(y_{i} \mid x_{i}\right)
$$

Maximum Likelihood Estimation

- The negative log-likelihood translates into the risk problem

$$
-\frac{1}{n} \log \left(\mathcal{L}_{n}(\theta)\right)=\frac{1}{n} \sum_{i=1}^{n}-\log p_{\theta}\left(y_{i} \mid x_{i}\right)
$$

- Therefore, the Maximum Likelihood Estimator (MLE) can be obtained through minimizing such risk

Maximum Likelihood Estimation

- The negative log-likelihood translates into the risk problem

$$
-\frac{1}{n} \log \left(\mathcal{L}_{n}(\theta)\right)=\frac{1}{n} \sum_{i=1}^{n}-\log p_{\theta}\left(y_{i} \mid x_{i}\right)
$$

- Therefore, the Maximum Likelihood Estimator (MLE) can be obtained through minimizing such risk

$$
\hat{\theta}=\underset{\theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n}-\log p_{\theta}\left(y_{i} \mid x_{i}\right)
$$

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

- Observe that in the binary classification case $y_{i} \in\{0,1\}$ we can write the posterior as

$$
p_{\theta}\left(y_{i} \mid x_{i}\right)=f\left(x_{i}, \theta\right)^{y_{i}}\left(1-f\left(x_{i}, \theta\right)\right)^{\left(1-y_{i}\right)}
$$

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

- Observe that in the binary classification case $y_{i} \in\{0,1\}$ we can write the posterior as

$$
p_{\theta}\left(y_{i} \mid x_{i}\right)=f\left(x_{i}, \theta\right)^{y_{i}}\left(1-f\left(x_{i}, \theta\right)\right)^{\left(1-y_{i}\right)}
$$

- Implying

$$
\log p_{\theta}\left(y_{i} \mid x_{i}\right)=y_{i} \log \left(f\left(x_{i}, \theta\right)\right)+\left(1-y_{i}\right) \log \left(1-f\left(x_{i}, \theta\right)\right)
$$

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

- The resulting loss is called the Cross Entropy Loss

$$
R_{n}(\theta)=\frac{1}{n} \sum_{i=1}^{n} y_{i} \log \left(f\left(x_{i}, \theta\right)\right)+\left(1-y_{i}\right) \log \left(1-f\left(x_{i}, \theta\right)\right)
$$

- The next question is how to actually optimize such functions.

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

- The resulting loss is called the Cross Entropy Loss

$$
R_{n}(\theta)=\frac{1}{n} \sum_{i=1}^{n} y_{i} \log \left(f\left(x_{i}, \theta\right)\right)+\left(1-y_{i}\right) \log \left(1-f\left(x_{i}, \theta\right)\right)
$$

- The next question is how to actually optimize such functions.

Gradient Descent

The classical gradient descent (GD) consists on the iteration

$$
\theta_{t+1}=\theta_{t}-\alpha \nabla L\left(\theta_{t}\right)
$$

for some initial configuration θ_{0} and learning rate $\alpha>0$.

Computing Gradients: Backpropagation

Backpropagation is an efficient algorithm for computing risk gradients of NN models (Is essentially just chain rule).

- Let $L(\theta)=c(f(x, \theta))$, where the cost function c might depend on the label y or other parameters, but for the derivation purpose they are omitted.

How does a small change in the parameters θ_{ℓ} affect the loss L ? Observe that $L(\theta)=L\left(h^{(\ell)}\left(h^{(\ell-1)}, \theta_{\ell}\right), \theta_{\ell+1}^{L}\right)$, then

Computing Gradients: Backpropagation

Backpropagation is an efficient algorithm for computing risk gradients of NN models (Is essentially just chain rule).

- Let $L(\theta)=c(f(x, \theta))$, where the cost function c might depend on the label y or other parameters, but for the derivation purpose they are omitted.
- How does a small change in the parameters θ_{ℓ} affect the loss L ?

$$
\text { Observe that } L(\theta)=L\left(h^{(\ell)}\left(h^{(\ell-1)}, \theta_{\ell}\right), \theta_{\ell+1}^{L}\right) \text {, then }
$$

Computing Gradients: Backpropagation

Backpropagation is an efficient algorithm for computing risk gradients of NN models (Is essentially just chain rule).

- Let $L(\theta)=c(f(x, \theta))$, where the cost function c might depend on the label y or other parameters, but for the derivation purpose they are omitted.
- How does a small change in the parameters θ_{ℓ} affect the loss L ?
- Observe that $L(\theta)=L\left(\boldsymbol{h}^{(\ell)}\left(\boldsymbol{h}^{(\ell-1)}, \theta_{\ell}\right), \theta_{\ell+1}^{L}\right)$, then

$$
\frac{\partial L}{\partial \theta_{\ell}}=\sum_{j=1}^{\left|H_{\ell}\right|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}
$$

Computing Gradients: Backpropagation

- Observe that $L(\theta)=L\left(\boldsymbol{h}^{(\ell)}\left(\boldsymbol{h}^{(\ell-1)}, \theta_{\ell}\right), \theta_{\ell+1}^{L}\right)$, then

$$
\frac{\partial L}{\partial \theta_{\ell}}=\sum_{j=1}^{\left|H_{\ell}\right|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}
$$

Computing Gradients: Backpropagation

- Observe that $L(\theta)=L\left(\boldsymbol{h}^{(\ell)}\left(\boldsymbol{h}^{(\ell-1)}, \theta_{\ell}\right), \theta_{\ell+1}^{L}\right)$, then

$$
\frac{\partial \boldsymbol{L}}{\partial \theta_{\ell}}=\sum_{j=1}^{\left|H_{\ell}\right|} \frac{\partial \boldsymbol{L}}{\partial \boldsymbol{h}_{j}^{(\ell)}} \cdot \frac{\partial \boldsymbol{h}_{j}^{(\ell)}}{\partial \theta_{\ell}}
$$

- $\frac{\partial h_{i}^{(\ell)}}{\partial \theta_{\ell}}$ can be computed directly from the definition.

Computing Gradients: Backpropagation

- The vector $\delta_{\ell}=\frac{\partial L}{\partial h_{j}^{(\ell)}}$ can be computed through a recursion on the network, on the opposite direction, starting from L
- $\delta_{L}=\frac{\partial L}{\partial h^{(L)}}$ is just the gradient of the cost function $c(\cdot)$.
- For $\ell \in[L-1]$

$$
\delta_{\ell}=\frac{\partial \boldsymbol{L}}{\partial \boldsymbol{h}^{(\ell+1)}} \frac{\partial \boldsymbol{h}^{(\ell+1)}}{\partial \boldsymbol{h}^{(\ell)}}=\delta_{\ell+1} \frac{\partial \boldsymbol{h}^{(\ell+1)}}{\partial \boldsymbol{h}^{(\ell)}}
$$

- The values of $\frac{\partial h^{(\ell+1)}}{\partial h^{(\ell)}}$ can also be computed directly.

Stochastic Gradient Descent (SGD)

- On each iteration $t>0$ we choose uniformly at random an S-set $\mathcal{S} \subseteq[N]$ of indices $(|\mathcal{D}|=N)$ and compute the minibatch gradient as

$$
\hat{L}_{S}(\theta)=\frac{1}{S} \sum_{i \in \mathcal{S}} \ell\left(\theta, Z_{i}\right)
$$

$$
\hat{g}_{s}(\theta)=\nabla \hat{L}_{S}(\theta)
$$

- The iteration is given as before

$$
\theta_{t+1}=\theta_{t}-\alpha \hat{g}_{s}(\theta)
$$

Stochastic Gradient Descent (SGD)

Remark: The noise resulting from working with minibatches actually helps on avoiding bad minimas and to escape saddle points.

