
Neural Networks: Part I
Fundamentals

Daniel Yukimura

yukimura@impa.br

September 4, 2018

Neural Networks I: Fundamentals

Goal: Learn a Parametric Function.

• θ ∈ Θ: function parameters (these are learned).

• X : input space.

• Y : outcome space.

Neural Networks: Part I 2 / 39

The Perceptron

The Fundamental Building Block of Deep Learning

Neural Networks: Part I The Perceptron 3 / 39

Rosenblatt, 1957

The Perceptron

The Fundamental Building Block of Deep Learning
Processing units biologically inspired in neurons.

Figure: Neuron
Figure: (Artificial) Neuron

• There is no clear correspondence between Deep Learning and how the human
brain works!

Neural Networks: Part I The Perceptron 4 / 39

Rosenblatt, 1957

The Perceptron

Model: A parametric function ϕ : Rk → R, given by

ϕ(x) = σ

(
k∑

i=1

wixi + b

)

• activation function: σ : R → R (usually non-linear).

• parameters: w = (w1, . . . ,wk) ∈ Rk and b ∈ R

Neural Networks: Part I The Perceptron 5 / 39

The Perceptron

Model: A parametric function ϕ : Rk → R, given by
Is useful to look at it as a feedforward flow!

ϕ(x) = σ

(
k∑

i=1

wixi + b

)

• activation function: σ : R → R (usually non-linear).

• parameters: w = (w1, . . . ,wk) ∈ Rk and b ∈ R

Neural Networks: Part I The Perceptron 6 / 39

The Perceptron

Model: A parametric function ϕ : Rk → R, given by
Is useful to look at it as a feedforward flow!

ϕ(x) = σ

(
k∑

i=1

wixi + b

)

• activation function: σ : R → R (usually non-linear).

• parameters: w = (w1, . . . ,wk) ∈ Rk and b ∈ R

Neural Networks: Part I The Perceptron 7 / 39

The Perceptron

Model: A parametric function ϕ : Rk → R, given by
Is useful to look at it as a feedforward flow!

ϕ(x) = σ

(
k∑

i=1

wixi + b

)

• activation function: σ : R → R (usually non-linear).

• parameters: w = (w1, . . . ,wk) ∈ Rk and b ∈ R

Neural Networks: Part I The Perceptron 8 / 39

The Perceptron

Model: A parametric function ϕ : Rk → R, given by
Is useful to look at it as a feedforward flow!

ϕ(x) = σ

(
k∑

i=1

wixi + b

)

• activation function: σ : R → R (usually non-linear).

• parameters: w = (w1, . . . ,wk) ∈ Rk and b ∈ R

Neural Networks: Part I The Perceptron 9 / 39

The Perceptron

Model: A parametric function ϕ : Rk → R, given by
Is useful to look at it as a feedforward flow!

ϕ(x) = σ

(
k∑

i=1

wixi + b

)

• activation function: σ : R → R (usually non-linear).

• parameters: w = (w1, . . . ,wk) ∈ Rk and b ∈ R

Neural Networks: Part I The Perceptron 10 / 39

The Perceptron

Reassessing Linear Models:
The addition of an activation function is the first step on rising model
capacity.

Neural Networks: Part I The Perceptron 11 / 39

The Perceptron

Reassessing Linear Models:
The addition of an activation function is the first step on rising model
capacity.

Neural Networks: Part I The Perceptron 12 / 39

The Perceptron

Reassessing Linear Models:
The addition of an activation function is the first step on rising model
capacity.

Neural Networks: Part I The Perceptron 13 / 39

The Perceptron

Common Activation Functions

Rectified Linear Unit
(ReLU)

σ(z) = max (0, z)

Sigmoid Function

σ(z) =
1

1 + e−z

Hyperbolic Tangent

σ(z) =
ez − e−z

ez + e−z

Neural Networks: Part I The Perceptron 14 / 39

The Perceptron

Example: Binary Classification/Logistic Regression
The Perceptron was proposed as a model for binary classification.
Originally it used the step function as activation.

Neural Networks: Part I The Perceptron 15 / 39

The Perceptron

Example: Binary Classification/Logistic Regression
The Perceptron was proposed as a model for binary classification.
Originally it used the step function as activation.

Is hard to learn without differentiability!

Neural Networks: Part I The Perceptron 16 / 39

The Perceptron

Example: Binary Classification/Logistic Regression
In logistic regression we model the posterior distribution p(y | x) by
smoothly squeezing the linear model into a probability distribution.

pw(y = 1 | x) = sigm(wTx)

=
1

1 + e−wTx

meaning: The probability that x belongs to the class 1.

Neural Networks: Part I The Perceptron 17 / 39

The Perceptron

Example: The XOR function

• The Perceptron is unnable to learn the exclusive or (XOR)
function!

• The classes can’t be separated by half-spaces (linear models).

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

Table: y = x1 ⊕ x2

Neural Networks: Part I The Perceptron 18 / 39

Neural Networks

How to combine neurons to build more expressive models?
Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

• hj = σ

(
n0∑
i=1

w(1)
i,j xi + bj

)
• yk =

n1∑
j=1

w(2)
j,k hi

Neural Networks: Part I Neural Networks 19 / 39

Neural Networks

How to combine neurons to build more expressive models?
Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

• hj = σ

(
n0∑
i=1

w(1)
i,j xi + bj

)
• yk =

n1∑
j=1

w(2)
j,k hi

• Forward propagation

Neural Networks: Part I Neural Networks 20 / 39

Neural Networks

How to combine neurons to build more expressive models?
Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

• hj = σ

(
n0∑
i=1

w(1)
i,j xi + bj

)
• yk =

n1∑
j=1

w(2)
j,k hi

• Forward propagation

Neural Networks: Part I Neural Networks 21 / 39

Neural Networks

How to combine neurons to build more expressive models?
Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

• hj = σ

(
n0∑
i=1

w(1)
i,j xi + bj

)
• yk =

n1∑
j=1

w(2)
j,k hi

• Forward propagation

Neural Networks: Part I Neural Networks 22 / 39

Neural Networks

How to combine neurons to build more expressive models?
Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

• hj = σ

(
n0∑
i=1

w(1)
i,j xi + bj

)
• yk =

n1∑
j=1

w(2)
j,k hi

• Forward propagation

Neural Networks: Part I Neural Networks 23 / 39

Neural Networks

How to combine neurons to build more expressive models?
Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

• hj = σ

(
n0∑
i=1

w(1)
i,j xi + bj

)
• yk =

n1∑
j=1

w(2)
j,k hi

• Forward propagation

Neural Networks: Part I Neural Networks 24 / 39

Neural Networks

How to combine neurons to build more expressive models?
Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

• h = σ
(
W(1)Tx+ b

)
• y = W(2)Th

• Matrix notation is useful!

Neural Networks: Part I Neural Networks 25 / 39

Neural Networks

How to combine neurons to build more expressive models?
Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

• h = σ
(
W(1)Tx+ b

)
• y = W(2)Th

• Universal Approximation Theorem:
Given enough neurons in a hidden
layer, and a non-linear increasing
activation function, one can
approximate any Borel measurable
function (see [ref]).

Neural Networks: Part I Neural Networks 26 / 39

https://www.sciencedirect.com/science/article/pii/0893608089900208

Neural Networks

Do we need more layers?

• Using more layers seems to allow more capacity while using fewer
neurons, see [ref].

• There are many cases of success by using more layers.

• Deeper networks are harder to train!

Neural Networks: Part I Neural Networks 27 / 39

https://arxiv.org/abs/1512.03965

Neural Networks

Do we need more layers?

• Using more layers seems to allow more capacity while using fewer
neurons, see [ref].

• There are many cases of success by using more layers.

• Deeper networks are harder to train!

Neural Networks: Part I Neural Networks 27 / 39

https://arxiv.org/abs/1512.03965

Neural Networks

Do we need more layers?

• Using more layers seems to allow more capacity while using fewer
neurons, see [ref].

• There are many cases of success by using more layers.

• Deeper networks are harder to train!

Neural Networks: Part I Neural Networks 27 / 39

https://arxiv.org/abs/1512.03965

Neural Networks

Do we need more layers?

• h(0) = x, h(ℓ) = σ
(
W(ℓ)Th(ℓ−1) + b(ℓ)

)
, ℓ ∈ [L− 1]

• ŷ = f(x, θ) = W(L)Th(L−1) (sometimes ŷ = σ(. . .)).

• We denote θℓ = (W(ℓ), b(ℓ)) the parameters of layer ℓ, and θ = (θ1, . . . , θL)

Neural Networks: Part I Neural Networks 28 / 39

Risk Minimization

Recall:
We want to find the network weights that achieve the lowest risk value.

θ̂ = argmin
θ∈Θ

Rn(θ)

= argmin
θ∈Θ

1

n

n∑
i=1

ℓ (f (xi, θ) , yi)

Example: For L2 regression we have

Rn(θ) =
1

n

n∑
i=1

∥f (xi, θ)− yi∥22

Neural Networks: Part I Training Neural Networks 29 / 39

Maximum Likelihood Estimation

• When modelling posterior distributions pθ(y|x) is useful to look at the
likelihood function

Ln(θ) = pθ(D) =
n∏

i=1

pθ (xi, yi)

• Maximizing Ln(θ) means finding pθ that best represents the data.

• But, in the supervised problem we can consider the alternative form

Ln(θ) =

n∏
i=1

pθ (yi | xi) .

Neural Networks: Part I Training Neural Networks 30 / 39

Maximum Likelihood Estimation

• When modelling posterior distributions pθ(y|x) is useful to look at the
likelihood function

Ln(θ) = pθ(D) =
n∏

i=1

pθ (xi, yi)

• Maximizing Ln(θ) means finding pθ that best represents the data.

• But, in the supervised problem we can consider the alternative form

Ln(θ) =

n∏
i=1

pθ (yi | xi) .

Neural Networks: Part I Training Neural Networks 30 / 39

Maximum Likelihood Estimation

• When modelling posterior distributions pθ(y|x) is useful to look at the
likelihood function

Ln(θ) = pθ(D) =
n∏

i=1

pθ (xi, yi)

• Maximizing Ln(θ) means finding pθ that best represents the data.

• But, in the supervised problem we can consider the alternative form

Ln(θ) =

n∏
i=1

pθ (yi | xi) .

Neural Networks: Part I Training Neural Networks 30 / 39

Maximum Likelihood Estimation

• The negative log-likelihood translates into the risk problem

−1

n
log (Ln(θ)) =

1

n

n∑
i=1

− log pθ (yi | xi)

• Therefore, the Maximum Likelihood Estimator (MLE) can be obtained
through minimizing such risk

θ̂ = argmin
θ∈Θ

1

n

n∑
i=1

− log pθ (yi | xi)

Neural Networks: Part I Training Neural Networks 31 / 39

Maximum Likelihood Estimation

• The negative log-likelihood translates into the risk problem

−1

n
log (Ln(θ)) =

1

n

n∑
i=1

− log pθ (yi | xi)

• Therefore, the Maximum Likelihood Estimator (MLE) can be obtained
through minimizing such risk

θ̂ = argmin
θ∈Θ

1

n

n∑
i=1

− log pθ (yi | xi)

Neural Networks: Part I Training Neural Networks 31 / 39

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

• Observe that in the binary classification case yi ∈ {0, 1} we can
write the posterior as

pθ (yi | xi) = f(xi, θ)
yi(1− f(xi, θ))

(1−yi)

• Implying

log pθ (yi | xi) = yi log (f(xi, θ)) + (1− yi) log (1− f(xi, θ))

Neural Networks: Part I Training Neural Networks 32 / 39

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

• Observe that in the binary classification case yi ∈ {0, 1} we can
write the posterior as

pθ (yi | xi) = f(xi, θ)
yi(1− f(xi, θ))

(1−yi)

• Implying

log pθ (yi | xi) = yi log (f(xi, θ)) + (1− yi) log (1− f(xi, θ))

Neural Networks: Part I Training Neural Networks 32 / 39

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

• The resulting loss is called the Cross Entropy Loss

Rn(θ) =
1

n

n∑
i=1

yi log (f(xi, θ)) + (1− yi) log (1− f(xi, θ))

• The next question is how to actually optimize such functions.

Neural Networks: Part I Training Neural Networks 33 / 39

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

• The resulting loss is called the Cross Entropy Loss

Rn(θ) =
1

n

n∑
i=1

yi log (f(xi, θ)) + (1− yi) log (1− f(xi, θ))

• The next question is how to actually optimize such functions.

Neural Networks: Part I Training Neural Networks 33 / 39

Gradient Descent

The classical gradient descent (GD) consists on the iteration

θt+1 = θt − α∇L(θt)

for some initial configuration θ0 and learning rate α > 0.

Neural Networks: Part I Training Neural Networks 34 / 39

Computing Gradients: Backpropagation

Backpropagation is an efficient algorithm for computing risk
gradients of NN models (Is essentially just chain rule).

• Let L(θ) = c(f(x, θ)), where the cost function c might depend on the
label y or other parameters, but for the derivation purpose they are
omitted.

• How does a small change in the parameters θℓ affect the loss L?

• Observe that L(θ) = L(h(ℓ)(h(ℓ−1), θℓ), θ
L
ℓ+1), then

∂L
∂θℓ

=

|Hℓ|∑
j=1

∂L

∂h(ℓ)j

·
∂h(ℓ)j

∂θℓ

Neural Networks: Part I Training Neural Networks 35 / 39

Computing Gradients: Backpropagation

Backpropagation is an efficient algorithm for computing risk
gradients of NN models (Is essentially just chain rule).

• Let L(θ) = c(f(x, θ)), where the cost function c might depend on the
label y or other parameters, but for the derivation purpose they are
omitted.

• How does a small change in the parameters θℓ affect the loss L?

• Observe that L(θ) = L(h(ℓ)(h(ℓ−1), θℓ), θ
L
ℓ+1), then

∂L
∂θℓ

=

|Hℓ|∑
j=1

∂L

∂h(ℓ)j

·
∂h(ℓ)j

∂θℓ

Neural Networks: Part I Training Neural Networks 35 / 39

Computing Gradients: Backpropagation

Backpropagation is an efficient algorithm for computing risk
gradients of NN models (Is essentially just chain rule).

• Let L(θ) = c(f(x, θ)), where the cost function c might depend on the
label y or other parameters, but for the derivation purpose they are
omitted.

• How does a small change in the parameters θℓ affect the loss L?

• Observe that L(θ) = L(h(ℓ)(h(ℓ−1), θℓ), θ
L
ℓ+1), then

∂L
∂θℓ

=

|Hℓ|∑
j=1

∂L

∂h(ℓ)j

·
∂h(ℓ)j

∂θℓ

Neural Networks: Part I Training Neural Networks 35 / 39

Computing Gradients: Backpropagation

• Observe that L(θ) = L(h(ℓ)(h(ℓ−1), θℓ), θ
L
ℓ+1), then

∂L
∂θℓ

=

|Hℓ|∑
j=1

∂L

∂h(ℓ)j

·
∂h(ℓ)j

∂θℓ

•
∂h(ℓ)j

∂θℓ
can be computed directly from the definition.

Neural Networks: Part I Training Neural Networks 36 / 39

Computing Gradients: Backpropagation

• Observe that L(θ) = L(h(ℓ)(h(ℓ−1), θℓ), θ
L
ℓ+1), then

∂L
∂θℓ

=

|Hℓ|∑
j=1

∂L

∂h(ℓ)j

·
∂h(ℓ)j

∂θℓ

•
∂h(ℓ)j

∂θℓ
can be computed directly from the definition.

Neural Networks: Part I Training Neural Networks 36 / 39

Computing Gradients: Backpropagation

• The vector δℓ = ∂L
∂h(ℓ)j

can be computed through a recursion on the

network, on the opposite direction, starting from L

• δL =
∂L

∂h(L) is just the gradient of the cost function c(·).
• For ℓ ∈ [L− 1]

δℓ =
∂L

∂h(ℓ+1)

∂h(ℓ+1)

∂h(ℓ)
= δℓ+1

∂h(ℓ+1)

∂h(ℓ)

• The values of ∂h(ℓ+1)

∂h(ℓ) can also be computed directly.

Neural Networks: Part I Training Neural Networks 37 / 39

Stochastic Gradient Descent (SGD)

• On each iteration t > 0 we choose uniformly at random an S−set
S ⊆ [N] of indices (|D| = N) and compute the minibatch gradient
as

L̂S(θ) =
1

S

∑
i∈S

ℓ(θ,Zi)

ĝS(θ) = ∇L̂S(θ)

• The iteration is given as before

θt+1 = θt − αĝS(θ)

Neural Networks: Part I Training Neural Networks 38 / 39

Stochastic Gradient Descent (SGD)

Remark: The noise resulting from working with minibatches actually
helps on avoiding bad minimas and to escape saddle points.

Neural Networks: Part I Training Neural Networks 39 / 39

	The Perceptron
	Neural Networks
	Training Neural Networks

