Neural Networks: Part I Fundamentals

Daniel Yukimura

yukimura@impa.br

September 4, 2018

Neural Networks I: Fundamentals

Goal: Learn a Parametric Function.

$$\mathcal{X} \longrightarrow f_{\theta} \longrightarrow \mathcal{Y}$$

- $\theta \in \Theta$: function parameters (these are learned).
- \mathcal{X} : input space.
- \mathcal{Y} : outcome space.

The Fundamental Building Block of Deep Learning

Rosenblatt, 1957

The Fundamental Building Block of Deep Learning Processing units biologically inspired in **neurons**.

• There is no clear correspondence between Deep Learning and how the human brain works!

Model: A parametric function $\phi : \mathbb{R}^k \to \mathbb{R}$, given by

- activation function: $\sigma : \mathbb{R} \to \mathbb{R}$ (usually non-linear).
- parameters: $w = (w_1, \ldots, w_k) \in \mathbb{R}^k$ and $b \in \mathbb{R}$

- activation function: $\sigma : \mathbb{R} \to \mathbb{R}$ (usually non-linear).
- parameters: $w = (w_1, \ldots, w_k) \in \mathbb{R}^k$ and $b \in \mathbb{R}$

- activation function: $\sigma : \mathbb{R} \to \mathbb{R}$ (usually non-linear).
- parameters: $w = (w_1, \ldots, w_k) \in \mathbb{R}^k$ and $b \in \mathbb{R}$

- activation function: $\sigma : \mathbb{R} \to \mathbb{R}$ (usually non-linear).
- parameters: $w = (w_1, \ldots, w_k) \in \mathbb{R}^k$ and $b \in \mathbb{R}$

- activation function: $\sigma : \mathbb{R} \to \mathbb{R}$ (usually non-linear).
- parameters: $w = (w_1, \ldots, w_k) \in \mathbb{R}^k$ and $b \in \mathbb{R}$

- activation function: $\sigma : \mathbb{R} \to \mathbb{R}$ (usually non-linear).
- parameters: $w = (w_1, \ldots, w_k) \in \mathbb{R}^k$ and $b \in \mathbb{R}$

Reassessing Linear Models:

The addition of an **activation function** is the first step on rising model capacity.

Reassessing Linear Models:

The addition of an **activation function** is the first step on rising model capacity.

Reassessing Linear Models:

The addition of an **activation function** is the first step on rising model capacity.

Common Activation Functions

Hyperbolic Tangent

Example: Binary Classification/Logistic Regression

The Perceptron was proposed as a model for **binary classification**. Originally it used the **step function** as activation.

Example: Binary Classification/Logistic Regression

The Perceptron was proposed as a model for **binary classification**. Originally it used the **step function** as activation.

Is hard to learn without differentiability!

Example: Binary Classification/Logistic Regression

In **logistic regression** we model the posterior distribution p(y | x) by smoothly squeezing the linear model into a probability distribution.

meaning: The probability that *x* belongs to the class 1.

Example: The XOR function

- The Perceptron is unnable to learn the exclusive or (XOR) function!
- The classes can't be separated by half-spaces (linear models).

How to combine neurons to build more expressive models?

Feedforward Neural Network (FNN): We combine neurons layerwise as vertices of a directed graph.

•
$$h_j = \sigma \left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j \right)$$

• $y_k = \sum_{i=1}^{n_1} w_{j,k}^{(2)} h_i$

•
$$h_j = \sigma \left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j \right)$$

•
$$y_k = \sum_{j=1}^{n_1} w_{j,k}^{(2)} h_i$$

•
$$h_j = \sigma \left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j \right)$$

•
$$y_k = \sum_{j=1}^{n_1} w_{j,k}^{(2)} h_i$$

•
$$h_j = \sigma \left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j \right)$$

•
$$y_k = \sum_{j=1}^{n_1} w_{j,k}^{(2)} h_i$$

How to combine neurons to build more expressive models? Feedforward Neural Network (FNN): We combine neurons layerwise as

vertices of a directed graph.

•
$$h_j = \sigma \left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j \right)$$

•
$$y_k = \sum_{j=1}^{n_1} w_{j,k}^{(2)} h_i$$

How to combine neurons to build more expressive models? Feedforward Neural Network (FNN): We combine neurons layerwise as

vertices of a directed graph.

•
$$h_j = \sigma \left(\sum_{i=1}^{n_0} w_{i,j}^{(1)} x_i + b_j \right)$$

•
$$y_k = \sum_{j=1}^{n_1} w_{j,k}^{(2)} h_i$$

How to combine neurons to build more expressive models?

Feedforward Neural Network (FNN): We combine neurons layerwise as vertices of a directed graph.

- $h = \sigma \left(W^{(1)} x + b \right)$
- $y = W^{(2)^T}h$
- Matrix notation is useful!

• $h = \sigma \left(W^{(1)} x + b \right)$

•
$$y = W^{(2)^T}h$$

• Universal Approximation Theorem: Given enough neurons in a hidden layer, and a non-linear increasing activation function, one can approximate any Borel measurable function (see [ref]).

Do we need more layers?

- Using more layers seems to allow more capacity while using fewer neurons, see [ref].
- There are many cases of success by using more layers.
- Deeper networks are harder to train!

Do we need more layers?

- Using more layers seems to allow more capacity while using fewer neurons, see [ref].
- There are many cases of success by using more layers.
- Deeper networks are harder to train!

Do we need more layers?

- Using more layers seems to allow more capacity while using fewer neurons, see [ref].
- There are many cases of success by using more layers.
- Deeper networks are harder to train!

Do we need more layers?

•
$$h^{(0)} = x, h^{(\ell)} = \sigma \left(W^{(\ell)^T} h^{(\ell-1)} + b^{(\ell)} \right), \ell \in [L-1]$$

•
$$\hat{y} = f(x, \theta) = W^{(L)^T} h^{(L-1)}$$
 (sometimes $\hat{y} = \sigma(\dots)$).

• We denote $\theta_\ell = (W^{(\ell)}, b^{(\ell)})$ the parameters of layer ℓ , and $\theta = (\theta_1, \dots, \theta_L)$

Risk Minimization

Recall:

We want to find the network weights that achieve the lowest risk value.

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} R_n(\theta)$$
$$= \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i, \theta), y_i)$$

Example: For *L*₂ regression we have

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n \|f(x_i, \theta) - y_i\|_2^2$$

- When modelling posterior distributions $p_{\theta}(y|x)$ is useful to look at the likelihood function

$$\mathcal{L}_n(\theta) = p_{\theta}(\mathcal{D}) = \prod_{i=1}^n p_{\theta}(x_i, y_i)$$

- Maximizing $\mathcal{L}_n(\theta)$ means finding p_{θ} that best represents the data.
- But, in the supervised problem we can consider the alternative form

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n p_\theta \left(y_i \mid x_i \right).$$

- When modelling posterior distributions $p_{\theta}(y|x)$ is useful to look at the likelihood function

$$\mathcal{L}_n(\theta) = p_{\theta}(\mathcal{D}) = \prod_{i=1}^n p_{\theta}(x_i, y_i)$$

- Maximizing $\mathcal{L}_n(\theta)$ means finding p_{θ} that best represents the data.
- But, in the supervised problem we can consider the alternative form

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n p_\theta \left(y_i \mid x_i \right).$$

- When modelling posterior distributions $p_{\theta}(y|x)$ is useful to look at the likelihood function

$$\mathcal{L}_n(\theta) = p_{\theta}(\mathcal{D}) = \prod_{i=1}^n p_{\theta}(x_i, y_i)$$

- Maximizing $\mathcal{L}_n(\theta)$ means finding p_{θ} that best represents the data.
- But, in the supervised problem we can consider the alternative form

$$\mathcal{L}_n(\theta) = \prod_{i=1}^n p_\theta \left(y_i \mid x_i \right).$$

• The negative log-likelihood translates into the risk problem

$$-\frac{1}{n}\log\left(\mathcal{L}_n(\theta)\right) = \frac{1}{n}\sum_{i=1}^n -\log p_\theta\left(y_i \mid x_i\right)$$

• Therefore, the Maximum Likelihood Estimator (MLE) can be obtained through minimizing such risk

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} -\log p_{\theta} \left(y_{i} \mid x_{i} \right)$$

• The negative log-likelihood translates into the risk problem

$$-\frac{1}{n}\log\left(\mathcal{L}_n(\theta)\right) = \frac{1}{n}\sum_{i=1}^n -\log p_\theta\left(y_i \mid x_i\right)$$

• Therefore, the Maximum Likelihood Estimator (MLE) can be obtained through minimizing such risk

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} -\log p_{\theta} \left(y_i \mid x_i \right)$$

Example: Binary Classification/Logistic Regression

• Observe that in the binary classification case $y_i \in \{0, 1\}$ we can write the posterior as

$$p_{\theta}(y_i \mid x_i) = f(x_i, \theta)^{y_i} (1 - f(x_i, \theta))^{(1-y_i)}$$

Implying

 $\log p_{\theta}\left(y_{i} \mid x_{i}\right) = y_{i}\log\left(f(x_{i},\theta)\right) + (1-y_{i})\log\left(1-f(x_{i},\theta)\right)$

Example: Binary Classification/Logistic Regression

• Observe that in the binary classification case $y_i \in \{0, 1\}$ we can write the posterior as

$$p_{\theta}(y_i \mid x_i) = f(x_i, \theta)^{y_i} (1 - f(x_i, \theta))^{(1-y_i)}$$

Implying

$$\log p_{\theta}\left(y_{i} \mid x_{i}\right) = y_{i}\log\left(f(x_{i},\theta)\right) + (1-y_{i})\log\left(1-f(x_{i},\theta)\right)$$

Example: Binary Classification/Logistic Regression

• The resulting loss is called the Cross Entropy Loss

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n y_i \log (f(x_i, \theta)) + (1 - y_i) \log (1 - f(x_i, \theta))$$

• The next question is how to actually optimize such functions.

Example: Binary Classification/Logistic Regression

• The resulting loss is called the Cross Entropy Loss

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n y_i \log (f(x_i, \theta)) + (1 - y_i) \log (1 - f(x_i, \theta))$$

• The next question is how to actually optimize such functions.

The classical gradient descent (GD) consists on the iteration

$$\theta_{t+1} = \theta_t - \alpha \nabla L(\theta_t)$$

for some initial configuration θ_0 and learning rate $\alpha > 0$.

Backpropagation is an efficient algorithm for computing risk gradients of NN models (Is essentially just chain rule).

- Let $L(\theta) = c(f(x, \theta))$, where the cost function *c* might depend on the label *y* or other parameters, but for the derivation purpose they are omitted.
- How does a small change in the parameters θ_ℓ affect the loss *L*?
- Observe that $L(\theta) = L(h^{(\ell)}(h^{(\ell-1)}, \theta_{\ell}), \theta_{\ell+1}^L)$, then

$$\frac{\partial L}{\partial \theta_{\ell}} = \sum_{j=1}^{|\mathcal{H}_{\ell}|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$$

Backpropagation is an efficient algorithm for computing risk gradients of NN models (Is essentially just chain rule).

- Let $L(\theta) = c(f(x, \theta))$, where the cost function *c* might depend on the label *y* or other parameters, but for the derivation purpose they are omitted.
- How does a small change in the parameters θ_{ℓ} affect the loss *L*?
- Observe that $L(\theta) = L(h^{(\ell)}(h^{(\ell-1)}, \theta_{\ell}), \theta_{\ell+1}^{L})$, then

$$\frac{\partial L}{\partial \theta_{\ell}} = \sum_{j=1}^{|\mathcal{H}_{\ell}|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$$

Backpropagation is an efficient algorithm for computing risk gradients of NN models (Is essentially just chain rule).

- Let $L(\theta) = c(f(x, \theta))$, where the cost function *c* might depend on the label *y* or other parameters, but for the derivation purpose they are omitted.
- How does a small change in the parameters θ_{ℓ} affect the loss *L*?
- Observe that $L(\theta) = L(h^{(\ell)}(h^{(\ell-1)}, \theta_{\ell}), \theta_{\ell+1}^L)$, then

$$\frac{\partial L}{\partial \theta_{\ell}} = \sum_{j=1}^{|H_{\ell}|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$$

• Observe that $L(\theta) = L(h^{(\ell)}(h^{(\ell-1)}, \theta_{\ell}), \theta_{\ell+1}^L)$, then

$$\frac{\partial L}{\partial \theta_{\ell}} = \sum_{j=1}^{|H_{\ell}|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$$

• $\frac{\partial h_l^{(c)}}{\partial \theta_\ell}$ can be computed directly from the definition.

• Observe that $L(\theta) = L(h^{(\ell)}(h^{(\ell-1)}, \theta_{\ell}), \theta_{\ell+1}^L)$, then

$$\frac{\partial L}{\partial \theta_{\ell}} = \sum_{j=1}^{|H_{\ell}|} \frac{\partial L}{\partial h_{j}^{(\ell)}} \cdot \frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$$

• $\frac{\partial h_{j}^{(\ell)}}{\partial \theta_{\ell}}$ can be computed directly from the definition.

- The vector $\delta_{\ell} = \frac{\partial L}{\partial h_j^{(\ell)}}$ can be computed through a recursion on the network, on the opposite direction, starting from *L*
 - $\delta_L = \frac{\partial L}{\partial h^{(L)}}$ is just the gradient of the cost function $c(\cdot)$.
 - For $\ell \in [L-1]$

$$\delta_{\ell} = \frac{\partial L}{\partial h^{(\ell+1)}} \frac{\partial h^{(\ell+1)}}{\partial h^{(\ell)}} = \delta_{\ell+1} \frac{\partial h^{(\ell+1)}}{\partial h^{(\ell)}}$$

- The values of $\frac{\partial h^{(\ell+1)}}{\partial h^{(\ell)}}$ can also be computed directly.

Stochastic Gradient Descent (SGD)

• On each iteration t > 0 we choose uniformly at random an *S*-set $S \subseteq [N]$ of indices $(|\mathcal{D}| = N)$ and compute the *minibatch* gradient as

$$\hat{\mathcal{L}}_{\mathcal{S}}(\theta) = \frac{1}{\mathcal{S}} \sum_{i \in \mathcal{S}} \ell(\theta, \mathbf{Z}_i)$$

 $\hat{g}_{\mathcal{S}}(\theta) = \nabla \hat{L}_{\mathcal{S}}(\theta)$

• The iteration is given as before

$$\theta_{t+1} = \theta_t - \alpha \hat{g}_{s}(\theta)$$

Stochastic Gradient Descent (SGD)

Remark: The noise resulting from working with minibatches actually helps on avoiding bad minimas and to escape saddle points.

