Neural Networks: Part |
Fundamentals

Daniel Yukimura

yukimura@impa.br

September 4, 2018

Neural Networks I: Fundamentals

Goal: Learn a Parametric Function.

X4[fo =Y

« 0 € O: function parameters (these are learned).

< X': input space.
- V: outcome space.

Neural Networks: Part | 2/39

The Perceptron

The Fundamental Building Block of Deep Learning

Rosenblatt, 1957

Neural Networks: Part | 3/39

The Perceptron

The Fundamental Building Block of Deep Learning
Processing units biologically inspired in neurons.

p - S

Figure: Neuron

o(x)

—

Figure: (Artificial) Neuron

* There is no clear correspondence between Deep Learning and how the human
brain works!

Rosenblatt, 1957

Neural Networks: Part | 439

The Perceptron

Model: A parametric function ¢ : R¥ — R, given by

k
=0 iXi + b
(x) o(x) <i_1wx +)

* activation function: o : R — R (usually non-linear).
- parameters: w = (w,...,w;) € R¥and b € R

Neural Networks: Part | 5/39

The Perceptron

Model: A parametric function ¢ : Rk — R, given by
Is useful to look at it as a feedforward flow!

« activation function: o : R — R (usually non-linear).
- parameters: w = (w1,...,w;) € Rfand b e R

Neural Networks: Part | 6/39

The Perceptron

Model: A parametric function ¢ : Rk — R, given by
Is useful to look at it as a feedforward flow!

« activation function: o : R — R (usually non-linear).
- parameters: w = (w1,...,w;) € Rfand b e R

Neural Networks: Part | 7/39

The Perceptron

Model: A parametric function ¢ : Rk — R, given by
Is useful to look at it as a feedforward flow!

« activation function: o : R — R (usually non-linear).
- parameters: w = (w1,...,w;) € Rfand b e R

Neural Networks: Part | 8/39

The Perceptron

Model: A parametric function ¢ : Rk — R, given by
Is useful to look at it as a feedforward flow!

« activation function: o : R — R (usually non-linear).
- parameters: w = (w1,...,w;) € Rfand b e R

Neural Networks: Part | 9/39

The Perceptron

Model: A parametric function ¢ : Rk — R, given by
Is useful to look at it as a feedforward flow!

« activation function: o : R — R (usually non-linear).
- parameters: w = (w1,...,w;) € Rfand b e R

Neural Networks: Part | 10 /39

The Perceptron

Reassessing Linear Models:

The addition of an activation function is the first step on rising model
capacity.

5000
1000
3000
2000 .

1000

~1000

Neural Networks: Part | 1/39

The Perceptron

Reassessing Linear Models:

The addition of an activation function is the first step on rising model
capacity.

5000
1000
3000
2000

1000

~1000

Neural Networks: Part | 12/ 39

The Perceptron

Reassessing Linear Models:

The addition of an activation function is the first step on rising model
capacity.

5000
1000
3000
2000

1000

~1000

Neural Networks: Part | 13/39

The Perceptron

Common Activation Functions

Rectified Linear Unit

Sigmoid Function Hyperbolic Tangent
(ReLU) s
1 eZ — e Z
0(z) = max (0,z) o(z) = 1+ez o(z) = o 1 ez

075
050

075
-1.00
-100 075 -0.50 -025 000 025 050 075

Neural Networks: Part |

14/ 39

The Perceptron

Example: Binary Classification/Logistic Regression

The Perceptron was proposed as a model for binary classification.
Originally it used the step function as activation.

1.0

0.8 \\ +

06 \
04

0.2 -

0.0 eo——— — —

v

Neural Networks: Part | 15/39

The Perceptron

Example: Binary Classification/Logistic Regression

The Perceptron was proposed as a model for binary classification.
Originally it used the step function as activation.

1.0 -
A Y

o8 Y +

0.6 \

0.4

0.2

0.0 ——————— - - A

-4 -2 0 2 4

Is hard to learn without differentiability!

Neural Networks: Part | 16 [39

The Perceptron

Example: Binary Classification/Logistic Regression

In logistic regression we model the posterior distribution p(y | x) by
smoothly squeezing the linear model into a probability distribution.

Hi=1|z)
puly =1 x) = sigm(w'x)

B 1
Sl e Wi

101 5 -

meaning: The probability that x belongs to the class 1.

Neural Networks: Part | 17/ 39

The Perceptron

Example: The XOR function

- The Perceptron is unnable to learn the exclusive or (XOR)
function!

- The classes can’t be separated by half-spaces (linear models).

X1 | X2 |)Y X1
01010

1
0] 111 ©
1101 ?
11110

Table: y = x1 & xo 0

Neural Networks: Part | 18/ 39

Neural Networks

How to combine neurons to build more expressive models?

Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

i=

n
. hj =0 (- W,E})X,‘ + b;)
1

ny
s = nwilh
]:

Neural Networks: Part | 19 /39

Neural Networks

How to combine neurons to build more expressive models?

Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

<& (1)
'hj:O' Zwi,jxi+b/
i=1

n
Yk = 21: Wj(,i)hi
=1

- Forward propagation

Neural Networks: Part | 20/ 39

Neural Networks

How to combine neurons to build more expressive models?

Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

<& (1)
'hj:O' Zwi,jxi+b/
i=1

n
Yk = 21: Wj(,i)hi
=1

- Forward propagation

Neural Networks: Part | 21/ 39

Neural Networks

How to combine neurons to build more expressive models?

Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

<& (1)
'hj:O' Zwi,jxi+b/
i=1

n
Yk = 21: Wj(,i)hi
=1

- Forward propagation

Neural Networks: Part | 22/ 39

Neural Networks

How to combine neurons to build more expressive models?

Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

<& (1)
'hj:O' Zwi,jxi+b/
i=1

n
Yk = 21: Wj(,i)hi
=1

- Forward propagation

Neural Networks: Part | 23 /39

Neural Networks

How to combine neurons to build more expressive models?

Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

<& (1)
'hj:O' ZWL}-X,'-l-b]'
i=1

n
Yk = 21: Wj(,i)hi
=1

- Forward propagation

Neural Networks: Part | 24 | 39

Neural Networks

How to combine neurons to build more expressive models?

Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

ch=o (w<1>Tx+ b)
cy= w®'h

« Matrix notation is useful!

Neural Networks: Part | 25/ 39

Neural Networks

How to combine neurons to build more expressive models?

Feedforward Neural Network (FNN): We combine neurons layerwise as
vertices of a directed graph.

. h:a(W(l)Tx+b>

cy=w'p

 Universal Approximation Theorem:
Given enough neurons in a hidden
layer, and a non-linear increasing
activation function, one can
approximate any Borel measurable
function (see [ref]).

Neural Networks: Part | 26 /39

https://www.sciencedirect.com/science/article/pii/0893608089900208

Neural Networks

Do we need more layers?

« Using more layers seems to allow more capacity while using fewer
neurons, see [ref].

Neural Networks: Part | 27 [39

https://arxiv.org/abs/1512.03965

Neural Networks

Do we need more layers?

« Using more layers seems to allow more capacity while using fewer
neurons, see [ref].

« There are many cases of success by using more layers.

Neural Networks: Part | 27 [39

https://arxiv.org/abs/1512.03965

Neural Networks

Do we need more layers?

« Using more layers seems to allow more capacity while using fewer
neurons, see [ref].

« There are many cases of success by using more layers.

« Deeper networks are harder to train!

27 [39

Neural Networks: Part |

https://arxiv.org/abs/1512.03965

Neural Networks

Do we need more layers?

e hO —x hO = & (Ww)Th(e—l) + b(@)), tel—1)

« §=flx,0) = WO D (sometimes § = o(...)).
+ We denote 6, = (W9, b(¥)) the parameters of layer ¢, and 6 = (61,...,6;)

Neural Networks: Part | 28 [39

Risk Minimization

Recall:
We want to find the network weights that achieve the lowest risk value.

Example: For L, regression we have

1 n
Ro(6) = — 3 [IF(x.6) — yill3
i=1

Neural Networks: Part | 29/39

Maximum Likelihood Estimation

« When modelling posterior distributions py(y|x) is useful to look at the
likelihood function

Ln(0) = pe(D) = Hpe (Xi, i)

Neural Networks: Part | 30 /39

Maximum Likelihood Estimation

« When modelling posterior distributions py(y|x) is useful to look at the
likelihood function

Ln(0) = pe(D) = Hpe (Xi, i)

« Maximizing £,(0) means finding py that best represents the data.

Neural Networks: Part | 30 /39

Maximum Likelihood Estimation

« When modelling posterior distributions py(y|x) is useful to look at the
likelihood function

Ln(0) = pe(D) = HP@ (Xi, i)

« Maximizing £,(0) means finding py that best represents the data.
* But, in the supervised problem we can consider the alternative form

n

L£a(0) =[] po 0 I %)

i=1

Neural Networks: Part | 30 /39

Maximum Likelihood Estimation

- The negative log-likelihood translates into the risk problem

n

1 1
——log (La(0)) = > —logpy (i | %)

i=1

Neural Networks: Part | 31/39

Maximum Likelihood Estimation

- The negative log-likelihood translates into the risk problem

1 1
—21 A N N oxe
n 08 (Ln(6)) " ; ogpo Vi | xi)
« Therefore, the Maximum Likelihood Estimator (MLE) can be obtained
through minimizing such risk

R 1<
0= in — —1 il X
argmin - ; ogpe (Vi | xi)

Neural Networks: Part | 31/39

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

- Observe that in the binary classification case y; € {0,1} we can
write the posterior as

po Vi | xi) = f(xi, 0V (1 — f(x;,6)) 1)

Neural Networks: Part | 32/39

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

- Observe that in the binary classification case y; € {0,1} we can
write the posterior as

po i | xi) = f(x;, 0 (1 — f(x;, 0))(1—}’:')
- Implying

log pg (yi | xi) = yilog (f(xi,0)) + (1 — yi) log (1 — f(xi, 0))

Neural Networks: Part | 32/39

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

« The resulting loss is called the Cross Entropy Loss

Ra(6) = > yilos (Fx, 6)) + (1 — i) og (1 fx;, 0))
i=1

Neural Networks: Part | 33/39

Maximum Likelihood Estimation

Example: Binary Classification/Logistic Regression

« The resulting loss is called the Cross Entropy Loss

Ra(6) = > yilos (Fx, 6)) + (1 — i) og (1 fx;, 0))
i=1

- The next question is how to actually optimize such functions.

Neural Networks: Part | 33/39

Gradient Descent

The classical gradient descent (GD) consists on the iteration
9t+1 = Ht - aVL(Gt)

for some initial configuration 6, and learning rate a > 0.

2

14

04

-1

-2 T T
-10 -5 0 5 10

Neural Networks: Part | 34 /39

Computing Gradients: Backpropagation

Backpropagation is an efficient algorithm for computing risk
gradients of NN models (Is essentially just chain rule).

* Let L(0) = c(f(x,0)), where the cost function ¢ might depend on the
label y or other parameters, but for the derivation purpose they are
omitted.

Neural Networks: Part | 35/ 39

Computing Gradients: Backpropagation

Backpropagation is an efficient algorithm for computing risk
gradients of NN models (Is essentially just chain rule).

* Let L(0) = c(f(x,0)), where the cost function ¢ might depend on the
label y or other parameters, but for the derivation purpose they are

omitted.
« How does a small change in the parameters 0, affect the loss L?

Neural Networks: Part | 35/ 39

Computing Gradients: Backpropagation

Backpropagation is an efficient algorithm for computing risk
gradients of NN models (Is essentially just chain rule).

* Let L(0) = c(f(x,0)), where the cost function ¢ might depend on the
label y or other parameters, but for the derivation purpose they are
omitted.

« How does a small change in the parameters 0, affect the loss L?

- Observe that L(0) = L(h©) (h*~1) ¢,),6%,), then

oL g oL on
06, ~ 2 on® 0,

Neural Networks: Part | 35/ 39

Computing Gradients: Backpropagation

- Observe that L(0) = L(h®) (h*=1) 6,), 6%,), then

o _<h oL o7
805 n - 8hj(e) 802

Neural Networks: Part | 36 /39

Computing Gradients: Backpropagation

- Observe that L(0) = L(h®) (h*=1) 6,), 6%,), then

o _<h oL o7
60[n - 8h}4) 802

ah® . .
* g, can be computed directly from the definition.

Neural Networks: Part | 36 /39

Computing Gradients: Backpropagation

« The vector §, = % can be computed through a recursion on the
j
network, on the opposite direction, starting from L
e b= % is just the gradient of the cost function c(-).
« Forfe[L—1]

oL oht+D) oht+1)
O = GhED gh® O gpm

(£+1) .
- The values of 227 can also be computed directly.

Neural Networks: Part | 37/ 39

Stochastic Gradient Descent (SGD)

- On each iteration t > 0 we choose uniformly at random an S—set
S C [N] of indices (|D| = N) and compute the minibatch gradient
as

is(0) = 5 4(6.2)

i€eS

ds() = Vis(0)
- The iteration is given as before

Oc+1 = 0c — ags(0)

Neural Networks: Part | 3839

Stochastic Gradient Descent (SGD)

Remark: The noise resulting from working with minibatches actually
helps on avoiding bad minimas and to escape saddle points.

Neural Networks: Part | 39/39

	The Perceptron
	Neural Networks
	Training Neural Networks

