Neural Networks: Part 11
Designing Neural Networks + PyTorch Intro

Daniel Yukimura

yukimura@impa.br

September 6, 2018

Neural Networks 1l

Recall last class:
Feedforward Neural Network (FNN)

Ho H, H, His Hy

ho — 4 (MoTh(e—l) 4 b(e))

Neural Networks: Part Il 2/24

Neural Networks 1l

Recall last class:
Empirical Risk Minimization

i Z(@, y)

Ln(0) =Y € (f(x,0) i) On = argmin Ly (6)
i=1

Neural Networks: Part Il 3/24

Neural Networks 1l

Recall last class:
Stochastic Gradient Descent

i Z(@, y)

HL-1 HL

0r11 = 0, — aVis(0)

Neural Networks: Part Il 424

Designing Neural Networks

Modular approach:

f(ve)

input output

O+t # HO

H 6= (W, b0, @)

Neural Networks: Part Il 5/24

Designing Neural Networks

Modular approach:
Modularity allow us to design complex structures from simpler ones.

S

Na

Neural Networks: Part Il 6/24

Designing Neural Networks

Backpropagation:
The steps of the backpropagation algorithm can also be encapsulated
inside the modules.

(€) €
. h®O = fg(h(éfl),g(é’)) hT 51'

oL
Layer ¢ |55

[} !

pe-1) 5e=1)

Neural Networks: Part Il 7/ 24

Designing Neural Networks

Backpropagation:
The steps of the backpropagation algorithm can also be encapsulated
inside the modules.

(©) €9
- hO = f,(h), p0)) h)
s T ¢
oL oL oh® oh
’ - ' =00 oL
200 9h®) 990 900 Layer /¢ 0L
T v

pe-1) 5e=1)

Neural Networks: Part Il 7/ 24

Designing Neural Networks

Backpropagation:
The steps of the backpropagation algorithm can also be encapsulated
inside the modules.

(£) ()
. h®O = ff(h(éfl) 9(1!)) h 0
: t v
oL oL &h® oh)
. - . — 50 oL
990 — oh® 99 9 Layer { [»550
oh)
L s g0 9T
)) ST F T

pe-1) 5e=1)

Neural Networks: Part Il 7/ 24

loss
ot s
Layer L |»555
- Combining this ideas we can et e et
define a Computational h O ’
Graph for our FNN model. peend B s

- This formulation makes it

o Layer £ + 1| 5%+
easier to implement and

deploy in practice. nof §60
+ Feedforward and Layer ¢ "%
backpropagation are the AT T
upwards and downwards |
flows, respectively. 0k e T
Layer 1 >t
KO =2 10O
input

Neural Networks: Part Il 8/24

loss
ot s
Layer L |»555
- Combining this ideas we can
. hL-DF _ } 5E-D
define a Computational =
Graph for our FNN model. peend B s

 This formulation makes it

Layer ¢ + 1> 2L~
easier to implement and Y 00+ Y

deploy in practice. nof §60

- Feedforward and Layer £ |55t
backpropagation are the AT T
upwards and downwards |
flows, respectively. 0k e T

oL
Layer 1 |»55

RO — 5 50)

Neural Networks: Part Il 9/24

loss
ot s
Layer L |»555
- Combining this ideas we can
. hL-DF _ } 5E-D
define a Computational =
Graph for our FNN model. peend B s

 This formulation makes it

Layer ¢ + 1> 2L~
easier to implement and Y 00+ Y

deploy in practice. nof §60
- Feedforward and Layer { >4t
backpropagation are the AT T

upwards and downwards
flows, respectively.

input

Neural Networks: Part Il 10/ 24

loss
ot s
Layer L |»555
- Combining this ideas we can
. hL-DF _ } 5E-D
define a Computational =
Graph for our FNN model. peend B s

« This formulation makes it
easier to implement and
deploy in practice.

- Feedforward and
backpropagation are the
upwards and downwards
flows, respectively.

Layer £ + 1{»525+

Neural Networks: Part I /24

loss
ot s
oL

hebt 5§ ety

- Combining this ideas we can
define a Computational
Graph for our FNN model.

« This formulation makes it
easier to implement and
deploy in practice.

oL
0(L+1)

- Feedforward and Layer £ 550
backpropagation are the AT T
upwards and downwards |
flows, respectively. 0k e T

Layer 1 >t
hO = 2%]8O
input

Neural Networks: Part I 12/ 24

- Combining this ideas we can
define a Computational
Graph for our FNN model. peend B s

 This formulation makes it

Layer ¢ + 1> 2L~
easier to implement and Y 00+ Y

deploy in practice. nof §60
- Feedforward and Layer £ |55t
backpropagation are the AT T
upwards and downwards |
flows, respectively. 0k e T
Layer 1 >t
RO =zF]s®
input

Neural Networks: Part Il 1324

h(L)! ‘ 50
oL

Layer L |»55f
- Combining this ideas we can et e et
define a Computational h O ’
Graph for our FNN model. peend B s

 This formulation makes it

Layer ¢ + 1> 2L~
easier to implement and Y 00+ Y

deploy in practice. nof §60
- Feedforward and Layer £ |55t
backpropagation are the AT T
upwards and downwards |
flows, respectively. 0k e T
Layer 1 >t
RO =zF]s®
input

Neural Networks: Part Il 14] 24

h(L)! 50
oL

Layer L |»55f
- Combining this ideas we can et e et
define a Computational h O ’
Graph for our FNN model. peend B s

 This formulation makes it

Layer ¢ + 1> 2L~
easier to implement and Y 00+ Y

deploy in practice. nof §60
+ Feedforward and Layer ¢ "%
backpropagation are the AT T
upwards and downwards |
flows, respectively. 0k e T
Layer 1 >t
KO =2 10O
input

Neural Networks: Part Il 15/ 24

- Combining this ideas we can
define a Computational
Graph for our FNN model. peend B s

 This formulation makes it

Layer ¢ + 1> 2L~
easier to implement and Y 00+ Y

deploy in practice. nof §60
+ Feedforward and Layer ¢ "%
backpropagation are the AT T
upwards and downwards |
flows, respectively. 0k e T
Layer 1 >t
KO =2 10O
input

Neural Networks: Part Il 16 | 24

loss
ot s
oL

Layer L |»55f

hebt 5§ ety

- Combining this ideas we can
define a Computational
Graph for our FNN model.

« This formulation makes it
easier to implement and
deploy in practice.

oL
0(L+1)

- Feedforward and Layer ¢ "%
backpropagation are the AT T
upwards and downwards |
flows, respectively. 0k e T

Layer 1 >t
KO =2 10O
input

Neural Networks: Part I 17/ 24

loss
ot s
Layer L |»555
- Combining this ideas we can
. hL-DF _ } 5E-D
define a Computational =
Graph for our FNN model. peend B s

« This formulation makes it
easier to implement and
deploy in practice.

Layer £ + 1{»525+

- Feedforward and
backpropagation are the
upwards and downwards
flows, respectively.

Layer 1 |»55

Neural Networks: Part Il 18 /24

loss
ot s
Layer L |»555
- Combining this ideas we can
. hL-DF _ } 5E-D
define a Computational =
Graph for our FNN model. peend B s

 This formulation makes it

Layer ¢ + 1> 2L~
easier to implement and Y 00+ Y

deploy in practice. nof §60
+ Feedforward and Layer ¢ "%
backpropagation are the AT T

upwards and downwards
flows, respectively.

input

Neural Networks: Part Il 19/ 24

Deep Learning: Software

« Writing your own neural networks from scratch is complex and
error-prone.
- There are many frameworks that provide tools for designing
Neural Networks in the modular form.
« PyTorch
+ TensorFlow
« Caffe(2)
- Keras
« MXNet, Theano, CNTK,...

Neural Networks: Part Il 20/ 24

Deep Learning: Software

« Writing your own neural networks from scratch is complex and
error-prone.

- There are many frameworks that provide tools for designing
Neural Networks in the modular form.
« PyTorch (We’ll focus on this one for now)
+ TensorFlow
« Caffe(2)
- Keras
« MXNet, Theano, CNTK,...

Neural Networks: Part Il 21/ 24

PyTorch - Introduction

Fundamental Concepts

- Tensors: Multidimensional arrays.

- Autograd: PyTorch can track your operations and automatically
construct their gradients.

« Modules: Similar to what we discussed, it can encompass several
components, like a layer or a loss function.

Neural Networks: Part Il 22 /24

PyTorch - Introduction

When performing computations with batches of data, as is usually
done, we want to take advantage of distributional computing.
Therefore our computations we’ll be done in batches of data

{X17X27"'5Xk}_> f0 _’{f(Xl’e)vf(X%a)’7f(Xk70)}

Therefore we usually stack our batch in tensors.

Neural Networks: Part Il 23 /24

PyTorch - Introduction

Tensors:

- Tensors are a generalization of vector and matrices for higher
dimensions. Computationally they are represented as
d—dimensional arrays.

- Example A multi-channel image is a 3d tensor.

Neural Networks: Part Il 24 [24

	Introduction
	Modularity
	Implementation

