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Neural Networks 1l

Recall last class:
Feedforward Neural Network (FNN)
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Neural Networks 1l

Recall last class:
Empirical Risk Minimization
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Neural Networks 1l

Recall last class:
Stochastic Gradient Descent
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Designing Neural Networks

Modular approach:
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Designing Neural Networks

Modular approach:
Modularity allow us to design complex structures from simpler ones.
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Designing Neural Networks

Backpropagation:
The steps of the backpropagation algorithm can also be encapsulated
inside the modules.
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Designing Neural Networks

Backpropagation:
The steps of the backpropagation algorithm can also be encapsulated
inside the modules.
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Designing Neural Networks

Backpropagation:
The steps of the backpropagation algorithm can also be encapsulated
inside the modules.
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- This formulation makes it
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- Combining this ideas we can
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define a Computational =
Graph for our FNN model. peend B s

« This formulation makes it
easier to implement and
deploy in practice.
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- Combining this ideas we can
define a Computational
Graph for our FNN model.

« This formulation makes it
easier to implement and
deploy in practice.
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- Combining this ideas we can
define a Computational
Graph for our FNN model. peend B s
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- Combining this ideas we can
define a Computational
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- Combining this ideas we can
define a Computational
Graph for our FNN model.

« This formulation makes it
easier to implement and
deploy in practice.

oL
0(L+1)

- Feedforward and Layer ¢ "%
backpropagation are the AT T
upwards and downwards |
flows, respectively. 0k e T

Layer 1 >t
KO =2 10O
input

Neural Networks: Part I 17/ 24



loss
ot s
Layer L |»555
- Combining this ideas we can
. hL-DF _ } 5E-D
define a Computational =
Graph for our FNN model. peend B s

« This formulation makes it
easier to implement and
deploy in practice.

Layer £ + 1{»525+

- Feedforward and
backpropagation are the
upwards and downwards
flows, respectively.

Layer 1 |»55

Neural Networks: Part Il 18 /24



loss
ot s
Layer L |»555
- Combining this ideas we can
. hL-DF _ } 5E-D
define a Computational =
Graph for our FNN model. peend B s

 This formulation makes it

Layer ¢ + 1> 2L~
easier to implement and Y 00+ Y

deploy in practice. nof  §60
+ Feedforward and Layer ¢ "%
backpropagation are the AT T

upwards and downwards
flows, respectively.

input

Neural Networks: Part Il 19/ 24



Deep Learning: Software

« Writing your own neural networks from scratch is complex and
error-prone.
- There are many frameworks that provide tools for designing
Neural Networks in the modular form.
« PyTorch
+ TensorFlow
« Caffe(2)
- Keras
« MXNet, Theano, CNTK,...
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Deep Learning: Software

« Writing your own neural networks from scratch is complex and
error-prone.

- There are many frameworks that provide tools for designing
Neural Networks in the modular form.
« PyTorch (We’ll focus on this one for now)
+ TensorFlow
« Caffe(2)
- Keras
« MXNet, Theano, CNTK,...
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PyTorch - Introduction

Fundamental Concepts

- Tensors: Multidimensional arrays.

- Autograd: PyTorch can track your operations and automatically
construct their gradients.

« Modules: Similar to what we discussed, it can encompass several
components, like a layer or a loss function.
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PyTorch - Introduction

When performing computations with batches of data, as is usually
done, we want to take advantage of distributional computing.
Therefore our computations we’ll be done in batches of data

{X17X27"'5Xk}_> f0 _’{f(Xl’e)vf(X%a)’7f(Xk70)}

Therefore we usually stack our batch in tensors.
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PyTorch - Introduction

Tensors:

- Tensors are a generalization of vector and matrices for higher
dimensions. Computationally they are represented as
d—dimensional arrays.

- Example A multi-channel image is a 3d tensor.
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