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Neural Networks II

Recall last class:
Feedforward Neural Network (FNN)

h(ℓ) = σ
(
W(ℓ)Th(ℓ−1) + b(ℓ)

)
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Neural Networks II

Recall last class:
Empirical Risk Minimization

 

    
 

Ln(θ) =
n∑

i=1

ℓ (f (xi, θ) , yi) θ̂n = argmin
θ∈Θ

Ln(θ)
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Neural Networks II

Recall last class:
Stochastic Gradient Descent

 

    
 

L̂S(θ) =
1

S

∑
i∈S

ℓ(θ,Zi) θt+1 = θt − α∇L̂S(θ)
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Designing Neural Networks

Modular approach:
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Designing Neural Networks

Modular approach:
Modularity allow us to design complex structures from simpler ones.
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Designing Neural Networks

Backpropagation:
The steps of the backpropagation algorithm can also be encapsulated
inside the modules.

• h(ℓ) = fℓ(h(ℓ−1), θ(ℓ))

•
∂L

∂θ(ℓ)
=

∂L
∂h(ℓ)

·∂h
(ℓ)

∂θ(ℓ)
= δ(ℓ)

∂h(ℓ)

∂θ(ℓ)

• δ(ℓ−1) = δ(ℓ) · ∂h(ℓ)

∂h(ℓ−1)
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• Combining this ideas we can
define a Computational
Graph for our FNN model.

• This formulation makes it
easier to implement and
deploy in practice.

• Feedforward and
backpropagation are the
upwards and downwards
flows, respectively.
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Deep Learning: Software

• Writing your own neural networks from scratch is complex and
error-prone.

• There are many frameworks that provide tools for designing
Neural Networks in the modular form.

• PyTorch
• TensorFlow
• Caffe(2)
• Keras
• MXNet, Theano, CNTK,...
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Deep Learning: Software

• Writing your own neural networks from scratch is complex and
error-prone.

• There are many frameworks that provide tools for designing
Neural Networks in the modular form.

• PyTorch (We’ll focus on this one for now)
• TensorFlow
• Caffe(2)
• Keras
• MXNet, Theano, CNTK,...
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PyTorch - Introduction

Fundamental Concepts

• Tensors: Multidimensional arrays.

• Autograd: PyTorch can track your operations and automatically
construct their gradients.

• Modules: Similar to what we discussed, it can encompass several
components, like a layer or a loss function.
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PyTorch - Introduction

When performing computations with batches of data, as is usually
done, we want to take advantage of distributional computing.
Therefore our computations we’ll be done in batches of data

Therefore we usually stack our batch in tensors.
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PyTorch - Introduction

Tensors:

• Tensors are a generalization of vector and matrices for higher
dimensions. Computationally they are represented as
d−dimensional arrays.

• Example A multi-channel image is a 3d tensor.

Neural Networks: Part II Implementation 24 / 24


	Introduction
	Modularity
	Implementation

