
Neural Networks: Part III
Training Practices

Daniel Yukimura

yukimura@impa.br

September 12, 2018



Training Practices

• Training Neural Network is not always easy
Recall our goal of minimizing the risk function

R(θ) = E[ℓ(y, f(x, θ))]

• While we have only access to an empirical version of it

Rn(θ) =

n∑
i=1

ℓ (f (xi, θ) , yi)

Neural Networks: Part III Introduction 2 / 21



Training Practices

• Training Neural Network is not always easy
Recall our goal of minimizing the risk function

R(θ) = E[ℓ(y, f(x, θ))]

• While we have only access to an empirical version of it

Rn(θ) =

n∑
i=1

ℓ (f (xi, θ) , yi)

Neural Networks: Part III Introduction 2 / 21



Training Practices

Questions:

1 How do we minimize Rn(θ)? since it’s a high dimensional non-convex
functional.

2 A minimum of Rn(θ) is good enough?
It is also a good minimum for the theoretical risk R(θ)?
Remark: A global minimum for Rn(θ) would almost surely overfit the
data.

Neural Networks: Part III Introduction 3 / 21



Optimization

Gradient Descent
Recall the classical Gradient Descent (GD), where we adjust the parameters
according to the gradient at the present point:

θt+1 = θt − η∇L(θt)

Neural Networks: Part III Optimization 4 / 21



Optimization

In PyTorch, we could implement such operation as:

for e in range(nb_epochs):
output = model(train_input)
loss = criterion(output, train_target)
model.zero_grad()
loss.backward()
with torch.no_grad():

for p in model.parameters(): p -= eta * p.grad

However, it has a memory footprint proportional to the full set size.

Neural Networks: Part III Optimization 5 / 21



Optimization

Stochastic Gradient Descent
Instead, we compute the gradient on random mini-batches:

L̂S(θ) =
1

S

∑
i∈S

ℓ(θ,Zi) θt+1 = θt − η∇L̂S(θt)

optimizer = torch.optim.SGD(model.parameters(), lr = eta)
for e in range(nb_epochs):

for b in range(0, train_input.size(0), mini_batch_size):
output = model(train_input.narrow(0, b, mini_batch_size))
loss = criterion(output, train_target.narrow(0, b, mini_batch_size))
optimizer.zero_grad()
loss.backward()
optimizer.step()

Neural Networks: Part III Optimization 6 / 21



Optimization

Adaptive Learning Rates

• It’s crucial to control the learning rates for the SGD case, since the
iterations introduce a source of noise, that doesn’t vanish with time.
One common rule is to take it to decay linearly, or at least satisfying

∞∑
k=1

ηk = ∞, and
∞∑
k=1

η2k < ∞

• We can treat the learning rate, or the form it evolves as a
hyperparameter (parameter whose value is set before the learning
process begins).

Neural Networks: Part III Optimization 7 / 21



Optimization

Momentum
Classic gradient descent can often become really slow, this is usually the
case since there is a strong assumption behind the method that assumes a
behaved gradient and local curvature. One way of addressing this problem
is by using moment.

ut = γut−1 + ηgt
θt+1 = θt − ut

• In some sense it brings inertia, by adding the influence of the previous
direction, and allowing acceleration.

Neural Networks: Part III Optimization 8 / 21



Optimization

Adam (Adaptive Moments)

mt = γβ1mt−1 + (1− β1)gt

m̂t =
mt

1− β1

vt = β2vt−1 + (1− β2)gt · gt

v̂t =
vt

1− β2

θt+1 = θt −
η√
v̂t + ε

m̂t

Neural Networks: Part III Optimization 9 / 21



Optimization

In PyTorch we can use the package torch.optim to apply several
known optimization strategies

• torch.optim.SGD (includes momentum)

• torch.optim.Adam
• torch.optim.Adagrad
• torch.optim.RMSProp
• …

Neural Networks: Part III Optimization 10 / 21



Training Practices

Let’s return to the question of whether a local minimum of Rn(θ) is good
enough.

• Designing better optimization algorithms surely help us reaching better
minimums.

• Another way of approaching generalization is to use regularization.
Which usually comprises in controlling the model capacity by adding a
criterion on the loss/risk to be minimized

θ̂n = argmin
θ∈Θ

Rn(θ) + λΩ(θ)

Neural Networks: Part III Regularization 11 / 21



Regularization

L2 and L1 Regularization:

• The most classical regularization is the L2 kind, which uses the
euclidean norm as penalty

θ̂n = argmin
θ∈Θ

Rn(θ) + λ∥θ∥2.

This kind of regularization, known as Tikhonov regularization, deals
with the typical problem of a ill-posed Hessian. A ill-posed Hessian loss
makes the problem unstable, sensitive to noise.

Neural Networks: Part III Regularization 12 / 21



Regularization

L2 and L1 Regularization:

• The next most common kind is the L1 regularization

θ̂n = argmin
θ∈Θ

Rn(θ) + λ∥θ∥1.

In this case we control the capacity of the model by promoting sparsity.
The Lasso method is a modification of such regularization, and is very
popular when working with high dimensional statistics.

Neural Networks: Part III Regularization 13 / 21



Regularization

Dropout:

• Is an example of a “deep” regularization, since it’s made specifically for
neural networks.

• It can be seen as a method for training an ensemble of models, simpler
models.
Remark: One can train several alternative models in a same task, and
use a decision criterion over their predictions, to obtain a better one,
this is called ensemble learning.

• Dropout trains the ensemble of all sub-networks that can be formed by
turning off non-output units.

Neural Networks: Part III Regularization 14 / 21



Regularization

Dropout:

• Is an example of a “deep” regularization, since it’s made specifically for
neural networks.

• It can be seen as a method for training an ensemble of models, simpler
models.
Remark: One can train several alternative models in a same task, and
use a decision criterion over their predictions, to obtain a better one,
this is called ensemble learning.

• Dropout trains the ensemble of all sub-networks that can be formed by
turning off non-output units.

Neural Networks: Part III Regularization 14 / 21



Regularization

Dropout:

• Is an example of a “deep” regularization, since it’s made specifically for
neural networks.

• It can be seen as a method for training an ensemble of models, simpler
models.
Remark: One can train several alternative models in a same task, and
use a decision criterion over their predictions, to obtain a better one,
this is called ensemble learning.

• Dropout trains the ensemble of all sub-networks that can be formed by
turning off non-output units.

Neural Networks: Part III Regularization 14 / 21



Regularization

Dropout:

Neural Networks: Part III Regularization 15 / 21



Regularization

Dropout:

• The sub-network is taken randomly at each step, making a statistically
dependent set of ensembles. Therefore, the loss function must be
weighted appropriately, which in this case uses the probability that
such sub-model is chosen. ∑

S⊆N

p(S)pS(y | x)

• Nevertheless, such sum has a exponential number of terms, making it
intractable in practice. Instead, one would use an heuristic idea of
simply scaling the weights by the probability of choosing such neuron
at the end of training.

Neural Networks: Part III Regularization 16 / 21



Regularization

Dropout:

• The sub-network is taken randomly at each step, making a statistically
dependent set of ensembles. Therefore, the loss function must be
weighted appropriately, which in this case uses the probability that
such sub-model is chosen. ∑

S⊆N

p(S)pS(y | x)

• Nevertheless, such sum has a exponential number of terms, making it
intractable in practice. Instead, one would use an heuristic idea of
simply scaling the weights by the probability of choosing such neuron
at the end of training.

Neural Networks: Part III Regularization 16 / 21



Regularization

Dropout:

• In PyTorch dropout is a torch.Module implemented as text.DropOut.
• For example, to add dropout to a network like this one

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(),
nn.Linear(100, 50), nn.ReLU(),
nn.Linear(50, 2));

we can simply add DropOut layers

model = nn.Sequential(nn.Linear(10, 100), nn.ReLU(),
nn.Dropout(),
nn.Linear(100, 50), nn.ReLU(),
nn.Dropout(),
nn.Linear(50, 2));

Neural Networks: Part III Regularization 17 / 21



Regularization

Dropout:

• When you are using dropout in your model is necessary to set it in to
“train” or “test” mode.

• The module class nn.Module.train(mode) sets

dropout.training = True

by default. To use it for prediction or testing, you must set this flag off.

model.train(False)

Neural Networks: Part III Regularization 18 / 21



Evaluation Protocols

• The way we evaluate the generalization of a ML model usually
demands a train test division of the available data

• Nevertheless, in many situations as we have seen, the tuning of
hyperparameters might be necessary. A few examples are learning
rates, the λ penalty for regularization, the exclusion probability on
dropout, number of layers, number of neurons, etc…

Neural Networks: Part III Evaluation Protocols 19 / 21



Evaluation Protocols

• Using the training set for this search could lead to overfitting.
Therefore, we instead use a Validation set to make such consideration

• We use something known as structural risk minimization principle

λ̂ = argmin
λ

R̂(θ̂λ)

Where θ̂λ is the estimator trained using the hyperparameter lambda,
and R̂ is an estimate of the risk (usually from the validation set)

Neural Networks: Part III Evaluation Protocols 20 / 21



Evaluation Protocols

Cross Validation
When data is scarce, where a new data subdivision could harm the performance of
training, one can use the strategy of cross validation (CV): average through multiple
random splits of the data in a train and a validation sets.
Algorithm:

• Divide the train set of size N in K blocks of similar size, denote each block by
Dk, and the remaining data as D−k.

• Let F a learning algorithm that given a training set and hyperparameter vector
λ returns an estimator

θ̂λ = F(D, λ)

• The K-th fold CV of the risk is given by the average

R̂(λ,D, K) =
1

N

K∑
k=1

∑
i∈Dk

ℓ
(
yi, f(xi,F(D−∥, λ))

)

Neural Networks: Part III Evaluation Protocols 21 / 21


	Introduction
	Optimization
	Regularization
	Evaluation Protocols
	Evaluation Protocols

