
Deep Learning Applied
Handling Images + Transfer Learning

Daniel Yukimura

yukimura@impa.br

September 26, 2018

Working with images

Convolutional Neural Networks (CNN):
Convolutional layers are essential for processing image data.

To convert a 256× 256 RGB image to another one, a typical linear layer would require
about (256× 256× 3)2 ≈ 3.87e+10 (≈ 150Gb), an extreme excess of parametrization.
Instead this transformation is replaced by a convolution with learnable filters.

Deep Learning Applied Introduction - CNNs 2 / 29

Working with images

Convolutional Neural Networks (CNN):
This layers work essentially as feature maps, and can usually specialize on
simple tasks like finding lines, corner, edges, or more refined ones, like
textures, face parts, forms, etc.

Deep Learning Applied Introduction - CNNs 3 / 29

Matthew Zeiler & Rob Fergus

Working with images

Pooling layers
On the processing pipe line we can have downsampling layers, where we
reduce dimension while preserving the information significance. The most
common operation used is maxpooling where we carry the highest
activation value forward in each cell.

Deep Learning Applied Introduction - CNNs 4 / 29

Working with images

Transpose convolution
This operation maps spatial shapes in the opposite direction, maintaining
the connections of a regular convolutional layer. Is usually applied when
the target variable Y is an image for example.
This can be done by: Rearrange into vectors, and transpose the operator

Deep Learning Applied Introduction - CNNs 5 / 29

Working with images

Transpose convolution
This operation maps spatial shapes in the opposite direction, maintaining
the connections of a regular convolutional layer. Is usually applied when
the target variable Y is an image for example.
This can be done by: Rewrite as a padded/fractional convolution

Deep Learning Applied Introduction - CNNs 6 / 29

Image Classification

Goal: To predict the class of an image, which often refers to the
“main object” in the image.

Measuring performance:
The standard formats are

• The error rate P̂(f(X, θ) ̸= Y), or conversely the accuracy P̂(f(X, θ) = Y)

• The balance error rate (BER)

1

C

C∑
y=1

P̂(f(X, θ) = y | Y = y)

Deep Learning Applied Computer Vision 7 / 29

Object Detection

Goal: Predicting classes and locations of targets in images. The standard
setting outputs a collection of bounding boxes, with classes associated to
each.
To quantify performance the standard metric is using intersections over
unions (IoU). A predicted bounding box B̂ is correct if there is some
annotated bounding box B for that class, such that the IoU is big enough

IoU =
area(B ∩ B̂)

area(B ∪ B̂)
>

1

2

Deep Learning Applied Computer Vision 8 / 29

Semantic Segmentation

Goal: Consists in labeling individual pixels with the class of the object it
refers to.
A standard performance metric is segmentation accuracy (SA) given as

SA =
n

n+ e

where n is the number of pixels on the true class, predicted correctly, and e
the number of pixels erroneously labeled.

Deep Learning Applied Computer Vision 9 / 29

Datasets

Available in torchvision.datasets:

• MNIST and Fashion-MNIST: 50k train images, 10k test images, 28× 28
grayscale, labeled on 10 classes.

• CIFAR10 and CIFAR100 (10 classes and 5× 20 “super classes”),: 50k train
images, 10k test images, 32× 32 RGB.

Deep Learning Applied Computer Vision 10 / 29

https://pytorch.org/docs/stable/torchvision/datasets.html

Datasets

• ImageNet: http://www.image-net.org/

• ≈ 14M images (“Large scale”)
• ≈ 1M images with bounding box annotations

ImageNet Large Scale Visual Recognition Challenge 2012:

• 1k classes
• 1.2M training images and 50k validation images.

Deep Learning Applied Computer Vision 11 / 29

http://www.image-net.org/

Datasets

• CelebFaces Attributes Dataset (CelebA): ≈ 200K celebrity images, each
with 40 attribute annotations

Deep Learning Applied Computer Vision 12 / 29

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

ConvNets

• Standard models for Image Classification: The LeNet family (leCun et
al., 1998) and modern extensions, like the AlexNet(Krizhevsky et al.,
2012) and VGGNet (Simonyan and Zisserman, 2014).

In PyTorch:

torchvision.models.alexnet, torchvision.models.vgg16

Deep Learning Applied Computer Vision 13 / 29

ConvNets

• Residual Networks(ResNet): Uses skip (or short-cut) connections,
creating a better gradient flow, it avoids the vanishing gradient
problem which is critical in networks with large depth.

In PyTorch:

torchvision.models.resnet34

Deep Learning Applied Computer Vision 14 / 29

Transfer Learning

• Is the practice of exploiting what has been learned for some task A to
improve generalization on a task B.

• Using a model trained for a task A on a large dataset, we exploit the
learned features for learning a task B where data is scarce, but of the
same type as task A.

• The idea is to repurpose the learned feature maps of a well trained
model, to give a good head start on the training of a new task that
doesn’t has as many data points.

Deep Learning Applied Transfer Learning 15 / 29

Transfer Learning

• Is the practice of exploiting what has been learned for some task A to
improve generalization on a task B.

• Using a model trained for a task A on a large dataset, we exploit the
learned features for learning a task B where data is scarce, but of the
same type as task A.

• The idea is to repurpose the learned feature maps of a well trained
model, to give a good head start on the training of a new task that
doesn’t has as many data points.

Deep Learning Applied Transfer Learning 15 / 29

Transfer Learning

• Is the practice of exploiting what has been learned for some task A to
improve generalization on a task B.

• Using a model trained for a task A on a large dataset, we exploit the
learned features for learning a task B where data is scarce, but of the
same type as task A.

• The idea is to repurpose the learned feature maps of a well trained
model, to give a good head start on the training of a new task that
doesn’t has as many data points.

Deep Learning Applied Transfer Learning 15 / 29

Transfer Learning

Transfer Learning on Neural Networks

• Change the architecture and reinitialize the weights on the last layers (one or
more).

• To train on a new task we can opt from retraining all parameters, or only the
ones on the remodelled layers.

Deep Learning Applied Transfer Learning 16 / 29

Transfer Learning

Transfer Learning on Neural Networks

• When we are training the whole network in a new task, the initial faze is
usually called pre-training.

• We can also freeze the original layers and only retrain on the new ones, we call
this process fine-tuning.

Deep Learning Applied Transfer Learning 17 / 29

Transfer Learning

Example: Dogs vs Cats
http://files.fast.ai/data/dogscats.zip

• 25k images of dogs and cats.

• In 2013 the Kaggle competition on this dataset had an accuracy of about
80%. (link)

Deep Learning Applied Transfer Learning 18 / 29

http://files.fast.ai/data/dogscats.zip
https://www.kaggle.com/c/dogs-vs-cats

Transfer Learning

Example: Dogs vs Cats
Using the fast.ai library we can easily set a transfer learning setting.

• Source Model: pre-trained ResNet34.

s_model = resnet34
data = ImageClassifierData.from_paths(PATH, tfms=tfms_from_model(s_model, sz))
learn = ConvLearner.pretrained(s_model, data, precompute=True)
learn.fit(0.01, 2)

[notebook]

Deep Learning Applied Transfer Learning 19 / 29

https://github.com/fastai/fastai
https://daniel-yukimura.github.io/schedules-image-processing-lab/docs/DogsVsCats.html

Transfer Learning

Example: Image Colorization
We can also exploit transfer knowledge on tasks apart from
classification, in this example we’ll see it for a colorization problem.

Deep Learning Applied Image Colorization 20 / 29

Image Colorization

Setting:

• Given a grayscale image, which we consider as the lightness
component, we want to infer saturation and hue. (We are using LAB
colorspace).

• Data: We are using the MIT places, a dataset of places, landscapes, and
buildings. It contains almost 2.5M images.

• Our input has size 256× 256 (×1), and our outputs are of size
256× 256× 2.

Deep Learning Applied Image Colorization 21 / 29

http://places.csail.mit.edu/

Image Colorization

Model:

• The model has a “autoencoder” kind of structure. We begin with a
series of convolutional layers pre-trained, and then use transpose
convolutions to infer the other two color channels.

• The first pre-trained part comes from ResNet18, where we modified the
input for grayscale images, and we will cut it off after the 6th set of
layers.

• The second part has a series of transposed convolutions generating the
256× 256× 2 output

Deep Learning Applied Image Colorization 22 / 29

Image Colorization

Deep Learning Applied Image Colorization 23 / 29

Image Colorization

class ColorizationNet(nn.Module):
def __init__(self, input_size=128):

super(ColorizationNet, self).__init__()
MID_FT_SIZE = 128

First half: ResNet
resnet = models.resnet18(num_classes=365)
Grayscale
resnet.conv1.weight = nn.Parameter(resnet.conv1.weight.

sum(dim=1).unsqueeze(1))
Midlevel features
self.midlevel_resnet = nn.Sequential(*list(resnet.children())[0:6])

Deep Learning Applied Image Colorization 24 / 29

Image Colorization

...## Second half: Upsampling
self.upsample = nn.Sequential(

nn.Conv2d(MID_FT_SIZE, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128), nn.ReLU(),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64), nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64), nn.ReLU(),
nn.Upsample(scale_factor=2),
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32), nn.ReLU(),
nn.Conv2d(32, 2, kernel_size=3, stride=1, padding=1),
nn.Upsample(scale_factor=2))

Deep Learning Applied Image Colorization 25 / 29

Image Colorization

...
def forward(self, input):

midlevel_features = self.midlevel_resnet(input)

output = self.upsample(midlevel_features)
return output

Deep Learning Applied Image Colorization 26 / 29

Image Colorization

Training the model:

criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2, weight_decay=0.0)
...
def train(train_loader, model, criterion, optimizer, epoch):

model.train()
...
for i, (input_gray, input_ab, target) in enumerate(train_loader):

...
loss = criterion(output_ab, input_ab)
losses.update(loss.item(), input_gray.size(0))
...

Deep Learning Applied Image Colorization 27 / 29

Image Colorization

Training the model:

...
optimizer.zero_grad()
loss.backward()
optimizer.step()

...
for epoch in range(epochs):

Train for one epoch, then validate
train(train_loader, model, criterion, optimizer, epoch)
with torch.no_grad():

losses = validate(val_loader, model, criterion, save_images,
epoch)

Deep Learning Applied Image Colorization 28 / 29

Image Colorization

Deep Learning Applied Image Colorization 29 / 29

	Introduction - CNNs
	Computer Vision
	Transfer Learning
	Image Colorization

