
Unsupervised Learning
Latent Spaces and Generative models

Daniel Yukimura

yukimura@impa.br

October 3, 2018

Unsupervised Learning

• Motivation: Most of the data available nowadays is actually
unlabeled. This data coming from multiple sources might be
hiding a lot of useful structure and statistical properties.

• Usual strategy: Dimensionality reduction, summarization, PCA,...

• Modern strategy: Generative modelling, statistical modelling,
Deep Learning ...

Unsupervised Learning Introduction 2 / 25

Unsupervised Learning

Example: Clustering
Goal: Group similar elements of a dataset.
If each data point has a hidden class associated to it (Xi, ci) ∈ X × [k],
we want to find these classes observing only D = {Xi}ni=1.

Unsupervised Learning Introduction 3 / 25

Generative Modeling

• In Machine Learning the term Generative Modeling(GM) refers
to methods for learning the probability distribution pdata from
data examples.

• In a indirect form, we can learn a way of sampling from the
distribution, without explicitly estimating it. This kind of GM
we’ll be of special interest.

Unsupervised Learning Introduction 4 / 25

Generative Modeling

Applications

• Image Synthesis - the photorealistic kind.

• Texture Synthesis.

• Super-resolution.

• Image-to-Image translation: Colorization, segmentation, photo
generation from sketches, labels, edges, etc...

• Art generation

Unsupervised Learning Introduction 5 / 25

Latent Variable Models

Definition 1 (Latent Variable Models)
A latent variable model (LVM) p is a probability distribution over two
sets of random variables V and H.

p(v, h) = P(V = v,H = h)

• V are the visible variables (the ones observed at learning time in
a data set).

• H are the latent variables (the ones representing underlying
concepts).

Unsupervised Learning Latent Variable Models 6 / 25

Latent Variable Models

Example: Mixture models
Here H is a discrete variable over the set {1, . . . ,m} (H ∼ Cat(π)).

p(v) =
m∑

k=1

πkp(v|k) =
m∑

k=1

πkpk(v)

• Gaussian Mixture: Assume pk(v) = N (v|µk,Σk)

• Clustering from Mixtures: (Bayes Rule)

P(H = k|V = v; θ) =
pH(k|θ)p(v|k; θ)∑m

k′=1 pH(k
′|θ)p(v|k′; θ)

Unsupervised Learning Latent Variable Models 7 / 25

Example: Mixture Models

Unsupervised Learning Latent Variable Models 8 / 25

Latent Variable Models

Latent Spaces
The space where our latent variables H ∈ H live, is known as the
latent space. Given good representations for these spaces and how
they affect the distribution is very useful, as we’ll see in the future.

Unsupervised Learning Latent Variable Models 9 / 25

Chen et al.

http://vip.bu.edu/projects/vsns/privacy-smartroom/facial-expression-vgan/

Example: Autoencoder

Autoencoders are a classical way of setting latent spaces.
We model two functions

f : X → H g : HX
respectively an encoder and a decoder, minimizing

f̂, ĝ = argmin
f,g

∥X− (g ◦ f)(X)∥

Unsupervised Learning Latent Variable Models 10 / 25

Latent Variable Models

Generator Functions
Consider the latent variables as coming from a known distribution H ∼ pH
over the latent space H. Then, a generator function

g : H → X (1)

generates (or samples) X given H

X d
= g(H) (2)

Unsupervised Learning Latent Variable Models 11 / 25

Latent Variable Models

Generator Functions

• g models a map of pH into pdata.

• Goal: Given a sample {Xi}i ∼ pdata produce a parametric generator
function.

Unsupervised Learning Latent Variable Models 12 / 25

Generative Adversarial Networks

• Goal: Learning a generator function G : H → X parametrized by a
neural network.
We are not able to look at the latent variables, therefore how can we
learn G?

• Idea: By pairing with another neural network D : X → [0, 1], we can set
an adversarial training framework.

• Adversarial Training: Design a game between machines where the
equilibrium solves a learning problem.

Unsupervised Learning Generative Adversarial Networks 13 / 25

Generative Adversarial Networks

• Goal: Learning a generator function G : H → X parametrized by a
neural network.
We are not able to look at the latent variables, therefore how can we
learn G?

• Idea: By pairing with another neural network D : X → [0, 1], we can set
an adversarial training framework.

• Adversarial Training: Design a game between machines where the
equilibrium solves a learning problem.

Unsupervised Learning Generative Adversarial Networks 13 / 25

Generative Adversarial Networks

• Goal: Learning a generator function G : H → X parametrized by a
neural network.
We are not able to look at the latent variables, therefore how can we
learn G?

• Idea: By pairing with another neural network D : X → [0, 1], we can set
an adversarial training framework.

• Adversarial Training: Design a game between machines where the
equilibrium solves a learning problem.

Unsupervised Learning Generative Adversarial Networks 13 / 25

Adversarial Training

Nash equilibrium:
To each player i we associate an strategy θi and a cost function ci(θ).
The Nash equilibrium is a special collection of strategies θ such that
for each i ∈ [n]

ci(θ) ≤ ci(θ̃i; θ−i), (3)

is satisfied for all possible choices of θ̃i and where θ−i denotes θ
minus coordinate i.

Unsupervised Learning Generative Adversarial Networks 14 / 25

Generative Game

Players:

• Generator: G : H → X .

• Discriminator: D : X → [0, 1]

Unsupervised Learning Generative Adversarial Networks 15 / 25

Generative Game

Players:

• Generator: G : H → X .

• Discriminator: D : X → [0, 1]

• G is a candidate for generative function.

• D distinguish if samples come from pdata or pG.

cD(G,D) = −1

2
(E[logD(X)] + E[log (1− D(G(H)))]) (4)

where H ∼ pH has a distribution we are able to sample.

Unsupervised Learning Generative Adversarial Networks 16 / 25

Generative Game

Players:

• Generator: G : H → X .

• Discriminator: D : X → [0, 1]

• G is a candidate for generative function.

• D distinguish if samples come from pdata or pG.

cD(G,D) = −1

2
(E[logD(X)] + E[log (1− D(G(H)))]) (4)

where H ∼ pH has a distribution we are able to sample.

Unsupervised Learning Generative Adversarial Networks 16 / 25

Generative Game

• Considering a zero-sum game

cG(G,D) = −cD(G,D). (5)

• The equilibrium coincides with the solution of the minmax
problem

G∗ = argmin
G

max
D

E[logD(X)] + E[log (1− D(XG))]. (6)

Unsupervised Learning Generative Adversarial Networks 17 / 25

Generative Game

• Considering a zero-sum game

cG(G,D) = −cD(G,D). (5)

• The equilibrium coincides with the solution of the minmax
problem

G∗ = argmin
G

max
D

E[logD(X)] + E[log (1− D(XG))]. (6)

Unsupervised Learning Generative Adversarial Networks 17 / 25

Generative Adversarial Networks

We model each player as a neural network

G(·) = G(·, θG), D(·) = D(·, θD) (7)

Training GANs:
Using gradient descent (through backpropagation)

• Improve θG minimizing cG.

• Improve θD minimizing cD.

Unsupervised Learning Generative Adversarial Networks 18 / 25

Generative Adversarial Networks

Unsupervised Learning Generative Adversarial Networks 19 / 25

Applications

NEW! BigGAN
Large Scale GAN Training for High Fidelity Natural Image Synthesis, Brock et al.
2018

Unsupervised Learning Generative Adversarial Networks 20 / 25

Algorithm: SGD for GANs

• For number of training iterations

• Sample minibatch {h(1), . . . , h(m)} from pH.
• Sample minibatch {x(1), . . . , x(m)} from the data set.
• Update the discriminator network D by the stochastic gradient:

∇θD
1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1− D

(
G
(
h(i)

)))]
• Sample minibatch {h(1), . . . , h(m)} from pZ.
• Update the generator network G by the stochastic gradient:

∇θG
1

m

m∑
i=1

log
(
1− D

(
G
(
h(i)

)))
• Return G

Unsupervised Learning Generative Adversarial Networks 21 / 25

Modeling in PyTorch

h_dim, nb_hidden = 8, 100
batch_size, lr = 10, 1e-3

model_G = nn.Sequential(nn.Linear(h_dim, nb_hidden),
nn.ReLU(),
nn.Linear(nb_hidden, 2))

model_D = nn.Sequential(nn.Linear(2, nb_hidden),
nn.ReLU(),
nn.Linear(nb_hidden, 1),
nn.Sigmoid())

Unsupervised Learning Generative Adversarial Networks 22 / 25

Modeling in PyTorch

...
optimizer_G = optim.Adam(model_G.parameters(), lr = lr)
optimizer_D = optim.Adam(model_D.parameters(), lr = lr)

for e in range(nb_epochs):
for t, real_batch in enumerate(real_samples.split(batch_size)):

z = real_batch.new(real_batch.size(0), z_dim).normal_()
fake_batch = model_G(z)
D_scores_on_real = model_D(real_batch)
D_scores_on_fake = model_D(fake_batch)
...

Unsupervised Learning Generative Adversarial Networks 23 / 25

Modeling in PyTorch

...
if t%2 == 0:

loss = (1 - D_scores_on_fake).log().mean()
optimizer_G.zero_grad()
loss.backward()
optimizer_G.step()

else:
loss = - (1 - D_scores_on_fake).log().mean() \
- D_scores_on_real.log().mean()
optimizer_D.zero_grad()
loss.backward()
optimizer_D.step()

Unsupervised Learning Generative Adversarial Networks 24 / 25

Generative Adversarial Networks

There are two pathological behaviors that often appear when training a
standard GAN:

• The model doesn’t converge, it keeps oscillating. There is no loss
minimization, and there are no guarantees that the chosen procedure
to reach the equilibrium in fact works.

• “Mode Collapse”: When G models very well only a small
sub-population, concentrating in modes that the discriminator can’t
tell its fake, but still doesn’t represent the data.

Moreover, there are no standard metrics for performance or accuracy for
generative models.

Unsupervised Learning Generative Adversarial Networks 25 / 25

	Introduction
	Latent Variable Models
	Generative Adversarial Networks

