Unsupervised Learning Latent Spaces and Generative models

Daniel Yukimura

yukimura@impa.br

October 3, 2018

Unsupervised Learning

- **Motivation:** Most of the data available nowadays is actually unlabeled. This data coming from multiple sources might be hiding a lot of useful structure and statistical properties.
- Usual strategy: Dimensionality reduction, summarization, PCA,...
- Modern strategy: Generative modelling, statistical modelling, Deep Learning ...

Unsupervised Learning

Example: Clustering

Goal: Group similar elements of a dataset. If each data point has a hidden class associated to it $(X_i, c_i) \in \mathcal{X} \times [k]$, we want to find these classes observing only $\mathcal{D} = \{X_i\}_{i=1}^n$.

Generative Modeling

- In Machine Learning the term **Generative Modeling(GM)** refers to methods for learning the probability distribution p_{data} from data examples.
- In a indirect form, we can learn a way of **sampling** from the distribution, without explicitly estimating it. This kind of GM we'll be of special interest.

Generative Modeling

Applications

- Image Synthesis the photorealistic kind.
- Texture Synthesis.
- Super-resolution.
- Image-to-Image translation: Colorization, segmentation, photo generation from sketches, labels, edges, etc...
- Art generation

Definition 1 (Latent Variable Models)

A latent variable model (LVM) p is a probability distribution over two sets of random variables V and H.

$$p(v,h) = \mathbb{P}(V = v, H = h)$$

- V are the **visible variables** (the ones observed at learning time in a data set).
- H are the **latent variables** (the ones representing underlying concepts).

Latent Variable Models

Example: Mixture models

Here *H* is a discrete variable over the set $\{1, \ldots, m\}$ ($H \sim Cat(\pi)$).

$$p(\mathbf{v}) = \sum_{k=1}^m \pi_k p(\mathbf{v}|k) = \sum_{k=1}^m \pi_k p_k(\mathbf{v})$$

- Gaussian Mixture: Assume $p_k(v) = \mathcal{N}(v|\mu_k, \Sigma_k)$
- Clustering from Mixtures: (Bayes Rule)

$$\mathbb{P}(H=k|V=v;\theta) = \frac{p_H(k|\theta)p(v|k;\theta)}{\sum_{k'=1}^m p_H(k'|\theta)p(v|k';\theta)}$$

Example: Mixture Models

Unsupervised Learning

Latent Variable Models

Latent Spaces

The space where our latent variables $H \in \mathcal{H}$ live, is known as the **latent space**. Given good representations for these spaces and how they affect the distribution is very useful, as we'll see in the future.

Example: Autoencoder

Autoencoders are a classical way of setting latent spaces. We model two functions

 $f: \mathcal{X} \to \mathcal{H} \ g: \mathcal{HX}$

respectively an encoder and a decoder, minimizing

Latent Variable Models

Generator Functions

Consider the latent variables as coming from a known distribution $H \sim p_H$ over the latent space \mathcal{H} . Then, a **generator function**

$$g: \mathcal{H} \to \mathcal{X}$$
 (1)

generates (or samples) X given H

$$X \stackrel{d}{=} g(H) \tag{2}$$

Latent Variable Models

Generator Functions

- g models a map of p_H into p_{data} .
- **Goal**: Given a sample $\{X_i\}_i \sim p_{data}$ produce a parametric generator function.

- Goal: Learning a generator function G : H → X parametrized by a neural network.
 We are not able to look at the latent variables, therefore how can we learn G?
- Idea: By pairing with another neural network $D : \mathcal{X} \to [0, 1]$, we can set an adversarial training framework.
- Adversarial Training: Design a game between machines where the equilibrium solves a learning problem.

- Goal: Learning a generator function G : H → X parametrized by a neural network.
 We are not able to look at the latent variables, therefore how can we learn G?
- Idea: By pairing with another neural network $D : \mathcal{X} \to [0, 1]$, we can set an adversarial training framework.
- Adversarial Training: Design a game between machines where the equilibrium solves a learning problem.

- Goal: Learning a generator function G : H → X parametrized by a neural network.
 We are not able to look at the latent variables, therefore how can we learn G?
- Idea: By pairing with another neural network $D : \mathcal{X} \to [0, 1]$, we can set an adversarial training framework.
- Adversarial Training: Design a game between machines where the equilibrium solves a learning problem.

Adversarial Training

Nash equilibrium:

To each player *i* we associate an strategy θ_i and a cost function $c_i(\theta)$. The **Nash equilibrium** is a special collection of strategies θ such that for each $i \in [n]$

$$c_i(\theta) \le c_i(\tilde{\theta}_i; \theta_{-i}),$$
 (3)

is satisfied for all possible choices of $\tilde{\theta}_i$ and where θ_{-i} denotes θ minus coordinate *i*.

Players:

- Generator: $G: \mathcal{H} \to \mathcal{X}$.
- Discriminator: $D : \mathcal{X} \rightarrow [0, 1]$

Players:

- Generator: $G: \mathcal{H} \to \mathcal{X}$.
- Discriminator: $D : \mathcal{X} \rightarrow [0, 1]$
- G is a candidate for generative function.
- D distinguish if samples come from *p*_{data} or *p*_G.

$$c_D(G,D) = -\frac{1}{2} \left(\mathbb{E}[\log D(X)] + \mathbb{E}[\log \left(1 - D(G(H))\right)] \right)$$
(4)

where $H \sim p_H$ has a distribution we are able to sample.

Players:

- Generator: $G: \mathcal{H} \to \mathcal{X}$.
- Discriminator: $D : \mathcal{X} \rightarrow [0, 1]$
- G is a candidate for generative function.
- D distinguish if samples come from p_{data} or p_G .

$$c_{D}(G,D) = -\frac{1}{2} \left(\mathbb{E}[\log D(X)] + \mathbb{E}[\log \left(1 - D(G(H))\right)] \right)$$
(4)

where $H \sim p_H$ has a distribution we are able to sample.

• Considering a zero-sum game

$$c_G(G,D) = -c_D(G,D).$$
(5)

• The equilibrium coincides with the solution of the minmax problem

$$G^* = \operatorname*{argmin}_{G} \max_{D} \mathbb{E}[\log D(X)] + \mathbb{E}[\log (1 - D(X_G))]. \tag{6}$$

• Considering a zero-sum game

$$c_G(G,D) = -c_D(G,D).$$
⁽⁵⁾

• The equilibrium coincides with the solution of the minmax problem

$$G^* = \operatorname*{argmin}_{G} \max_{D} \mathbb{E}[\log D(X)] + \mathbb{E}[\log (1 - D(X_G))]. \tag{6}$$

We model each player as a neural network

$$G(\cdot) = G(\cdot, \theta^G), \qquad D(\cdot) = D(\cdot, \theta^D)$$
 (7)

Training GANs:

Using gradient descent (through backpropagation)

- Improve θ^G minimizing c_G .
- Improve θ^D minimizing c_D .

Applications

NEW! BigGAN Large Scale GAN Training for High Fidelity Natural Image Synthesis, Brock et al. 2018

Algorithm: SGD for GANs

- For number of training iterations
 - Sample minibatch $\{h^{(1)}, \ldots, h^{(m)}\}$ from p_H .
 - Sample minibatch $\{x^{(1)}, \ldots, x^{(m)}\}$ from the data set.
 - Update the discriminator network *D* by the stochastic gradient:

$$\nabla_{\theta^{D}} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(\boldsymbol{G}\left(\boldsymbol{h}^{(i)} \right) \right) \right) \right]$$

- Sample minibatch $\{h^{(1)}, \ldots, h^{(m)}\}$ from p_Z .
- Update the generator network G by the stochastic gradient:

$$abla_{ heta^{\mathsf{G}}} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - \mathcal{D}\left(\mathcal{G}\left(h^{(i)} \right) \right) \right)$$

Return G

Modeling in PyTorch

h_dim, nb_hidden = 8, 100
batch_size, lr = 10, 1e-3

Modeling in PyTorch

```
optimizer_G = optim.Adam(model_G.parameters(), lr = lr)
optimizer_D = optim.Adam(model_D.parameters(), lr = lr)
```

```
for e in range(nb_epochs):
    for t, real_batch in enumerate(real_samples.split(batch_size)):
        z = real_batch.new(real_batch.size(0), z_dim).normal_()
        fake_batch = model_G(z)
        D_scores_on_real = model_D(real_batch)
        D_scores_on_fake = model_D(fake_batch)
        ...
```

. . .

Modeling in PyTorch

```
. . .
if t/2 == 0:
    loss = (1 - D_scores_on_fake).log().mean()
    optimizer_G.zero_grad()
    loss.backward()
    optimizer G.step()
else:
    loss = - (1 - D_scores_on_fake).log().mean() \
    - D_scores_on_real.log().mean()
    optimizer_D.zero_grad()
    loss_backward()
    optimizer D.step()
```

There are two pathological behaviors that often appear when training a standard GAN:

- The model doesn't converge, it keeps **oscillating**. There is no loss minimization, and there are no guarantees that the chosen procedure to reach the equilibrium in fact works.
- "Mode Collapse": When *G* models very well only a small sub-population, concentrating in modes that the discriminator can't tell its fake, but still doesn't represent the data.

Moreover, there are no standard metrics for performance or accuracy for generative models.