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Unsupervised Learning

• Motivation: Most of the data available nowadays is actually
unlabeled. This data coming from multiple sources might be
hiding a lot of useful structure and statistical properties.

• Usual strategy: Dimensionality reduction, summarization, PCA,...

• Modern strategy: Generative modelling, statistical modelling,
Deep Learning ...
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Unsupervised Learning

Example: Clustering
Goal: Group similar elements of a dataset.
If each data point has a hidden class associated to it (Xi, ci) ∈ X × [k],
we want to find these classes observing only D = {Xi}ni=1.
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Generative Modeling

• In Machine Learning the term Generative Modeling(GM) refers
to methods for learning the probability distribution pdata from
data examples.

• In a indirect form, we can learn a way of sampling from the
distribution, without explicitly estimating it. This kind of GM
we’ll be of special interest.
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Generative Modeling

Applications

• Image Synthesis - the photorealistic kind.

• Texture Synthesis.

• Super-resolution.

• Image-to-Image translation: Colorization, segmentation, photo
generation from sketches, labels, edges, etc...

• Art generation
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Latent Variable Models

Definition 1 (Latent Variable Models)
A latent variable model (LVM) p is a probability distribution over two
sets of random variables V and H.

p(v, h) = P(V = v,H = h)

• V are the visible variables (the ones observed at learning time in
a data set).

• H are the latent variables (the ones representing underlying
concepts).

Unsupervised Learning Latent Variable Models 6 / 25



Latent Variable Models

Example: Mixture models
Here H is a discrete variable over the set {1, . . . ,m} (H ∼ Cat(π)).

p(v) =
m∑

k=1

πkp(v|k) =
m∑

k=1

πkpk(v)

• Gaussian Mixture: Assume pk(v) = N (v|µk,Σk)

• Clustering from Mixtures: (Bayes Rule)

P(H = k|V = v; θ) =
pH(k|θ)p(v|k; θ)∑m

k′=1 pH(k
′|θ)p(v|k′; θ)
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Example: Mixture Models
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Latent Variable Models

Latent Spaces
The space where our latent variables H ∈ H live, is known as the
latent space. Given good representations for these spaces and how
they affect the distribution is very useful, as we’ll see in the future.
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Chen et al.

http://vip.bu.edu/projects/vsns/privacy-smartroom/facial-expression-vgan/


Example: Autoencoder

Autoencoders are a classical way of setting latent spaces.
We model two functions

f : X → H g : HX
respectively an encoder and a decoder, minimizing

f̂, ĝ = argmin
f,g

∥X− (g ◦ f)(X)∥
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Latent Variable Models

Generator Functions
Consider the latent variables as coming from a known distribution H ∼ pH
over the latent space H. Then, a generator function

g : H → X (1)

generates (or samples) X given H

X d
= g(H) (2)
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Latent Variable Models

Generator Functions

• g models a map of pH into pdata.

• Goal: Given a sample {Xi}i ∼ pdata produce a parametric generator
function.
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Generative Adversarial Networks

• Goal: Learning a generator function G : H → X parametrized by a
neural network.
We are not able to look at the latent variables, therefore how can we
learn G?

• Idea: By pairing with another neural network D : X → [0, 1], we can set
an adversarial training framework.

• Adversarial Training: Design a game between machines where the
equilibrium solves a learning problem.
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Adversarial Training

Nash equilibrium:
To each player i we associate an strategy θi and a cost function ci(θ).
The Nash equilibrium is a special collection of strategies θ such that
for each i ∈ [n]

ci(θ) ≤ ci(θ̃i; θ−i), (3)

is satisfied for all possible choices of θ̃i and where θ−i denotes θ
minus coordinate i.
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Generative Game

Players:

• Generator: G : H → X .

• Discriminator: D : X → [0, 1]
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Generative Game

Players:

• Generator: G : H → X .

• Discriminator: D : X → [0, 1]

• G is a candidate for generative function.

• D distinguish if samples come from pdata or pG.

cD(G,D) = −1

2
(E[logD(X)] + E[log (1− D(G(H)))]) (4)

where H ∼ pH has a distribution we are able to sample.
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Generative Game

• Considering a zero-sum game

cG(G,D) = −cD(G,D). (5)

• The equilibrium coincides with the solution of the minmax
problem

G∗ = argmin
G

max
D

E[logD(X)] + E[log (1− D(XG))]. (6)
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Generative Adversarial Networks

We model each player as a neural network

G(·) = G(·, θG), D(·) = D(·, θD) (7)

Training GANs:
Using gradient descent (through backpropagation)

• Improve θG minimizing cG.

• Improve θD minimizing cD.
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Generative Adversarial Networks
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Applications

NEW! BigGAN
Large Scale GAN Training for High Fidelity Natural Image Synthesis, Brock et al.
2018
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Algorithm: SGD for GANs

• For number of training iterations

• Sample minibatch {h(1), . . . , h(m)} from pH.
• Sample minibatch {x(1), . . . , x(m)} from the data set.
• Update the discriminator network D by the stochastic gradient:

∇θD
1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1− D

(
G
(
h(i)

)))]
• Sample minibatch {h(1), . . . , h(m)} from pZ.
• Update the generator network G by the stochastic gradient:

∇θG
1

m

m∑
i=1

log
(
1− D

(
G
(
h(i)

)))
• Return G

Unsupervised Learning Generative Adversarial Networks 21 / 25



Modeling in PyTorch

h_dim, nb_hidden = 8, 100
batch_size, lr = 10, 1e-3

model_G = nn.Sequential(nn.Linear(h_dim, nb_hidden),
nn.ReLU(),
nn.Linear(nb_hidden, 2))

model_D = nn.Sequential(nn.Linear(2, nb_hidden),
nn.ReLU(),
nn.Linear(nb_hidden, 1),
nn.Sigmoid())
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Modeling in PyTorch

...
optimizer_G = optim.Adam(model_G.parameters(), lr = lr)
optimizer_D = optim.Adam(model_D.parameters(), lr = lr)

for e in range(nb_epochs):
for t, real_batch in enumerate(real_samples.split(batch_size)):

z = real_batch.new(real_batch.size(0), z_dim).normal_()
fake_batch = model_G(z)
D_scores_on_real = model_D(real_batch)
D_scores_on_fake = model_D(fake_batch)
...
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Modeling in PyTorch

...
if t%2 == 0:

loss = (1 - D_scores_on_fake).log().mean()
optimizer_G.zero_grad()
loss.backward()
optimizer_G.step()

else:
loss = - (1 - D_scores_on_fake).log().mean() \
- D_scores_on_real.log().mean()
optimizer_D.zero_grad()
loss.backward()
optimizer_D.step()
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Generative Adversarial Networks

There are two pathological behaviors that often appear when training a
standard GAN:

• The model doesn’t converge, it keeps oscillating. There is no loss
minimization, and there are no guarantees that the chosen procedure
to reach the equilibrium in fact works.

• “Mode Collapse”: When G models very well only a small
sub-population, concentrating in modes that the discriminator can’t
tell its fake, but still doesn’t represent the data.

Moreover, there are no standard metrics for performance or accuracy for
generative models.
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