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Generative Adversarial Networks (GANs)

Review:
We have two neural networks competing

• Generator: G : H → X .

• Discriminator: D : X → [0, 1]

We want to find the parameters that reach equilibrium for the minmax
game

G∗ = argmin
G

max
D

1

2
(E[logD(X)] + E[log (1− D(XG))]) . (1)

where XG = G(H) are the “fake” samples, given by the distribution induced
by G from pH.

Generative Adversarial Networks 2 / 17
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Generative Adversarial Networks (GANs)

Game Saturation:

• The cost for the generator function E[log (1− D(XG))] is useful in
theory, but performs badly in practice.

• The “fake” samples can be so “unrealistic” in the beginning, that the
response of D saturates.

• The cross-entropy approach implies that if the discriminator
successfully rejects XG with high confidence, the gradient vanishes, this
is common in the end of supervising training, but here we have from
the beginning

Generative Adversarial Networks 4 / 17



Generative Adversarial Networks (GANs)

Game Saturation:

• The cost for the generator function E[log (1− D(XG))] is useful in
theory, but performs badly in practice.

• The “fake” samples can be so “unrealistic” in the beginning, that the
response of D saturates.

• The cross-entropy approach implies that if the discriminator
successfully rejects XG with high confidence, the gradient vanishes, this
is common in the end of supervising training, but here we have from
the beginning

Generative Adversarial Networks 4 / 17



Generative Adversarial Networks (GANs)

Game Saturation:

• The cost for the generator function E[log (1− D(XG))] is useful in
theory, but performs badly in practice.

• The “fake” samples can be so “unrealistic” in the beginning, that the
response of D saturates.

• The cross-entropy approach implies that if the discriminator
successfully rejects XG with high confidence, the gradient vanishes, this
is common in the end of supervising training, but here we have from
the beginning

Generative Adversarial Networks 4 / 17



Generative Adversarial Networks (GANs)

Game Saturation:

• Instead we modify the cost when updating θG

cG = −1

2
E[log (D(XG))] (2)

• The formulation of this alternative game is heuristic, the idea is that
each player has a strong gradient when that player is “losing” the game.
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Deep Convolutional GANs (DCGANs)

Reference: Radford et al. 2015, Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks.

• PyTorch has DCGAN in his set of examples:

https://github.com/pytorch/examples.git
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Deep Convolutional GANs (DCGANs)

The authors did an extensive model exploration and identified a set of rules
that resulted in more stable training:

• Only convolutional layers, no fully-connected.

• Instead of pooling layers, use strided convolutions for D and strided
transpose convolutions for G.

• Use batchnorm on both G and D.

• Use ReLu in G except for the output, where it uses Tanh.

• Use the LeakyReLu for all D.

colab notebook
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https://colab.research.google.com/drive/1oZxalhooNrm8JQhHbryqXK52R_dlQMpY


Wasserstein GAN (WGAN)

This version presents better stability, ans prevents “model collapse”.

• The original optimization problem in (1) is equivalent to

G∗ = argmin
G

DJS(pdata, pG) (3)

where DJS is the Jensen-Shannon Divergent, a standard dissimilarity
measure on the space of distributions.

• Nevertheless, DJS doesn’t really capture a metric structure on the space
of distributions.

• The alternative choice is to use the Wasserstein metric.
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Wasserstein GAN

• The Wasserstein distance we’ll use is defined by

W(µ, ν) = inf
η∈Π(µ,ν)

E(X,X̃)∼η

[
∥X− X̃∥

]
(4)

where Π(µ, ν) are distributions with marginals µ and ν (coupling).

• This distribution is sometimes known as the “earth moving distance”,
which gives the interpretation of the minimum mass one has to move
to transform one distribution into the other.
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Wasserstein GAN

• The idea would be finding a generator matching on this metric

G∗ = argmin
G

W(pdata, pG) (5)

which is unfortunately unfeasible.

• We use instead an equivalent form, given by a result of Kantorovich
and Rubinstein

W(µ, ν) = max
∥f∥L≤1

EX∼µ

X̃∼ν

[
f(X)− f(X̃)

]
(6)

where ∥f∥L = supx,x̃
∥f(x)−f(x̃)∥

∥x−x̃∥ is the Lipschitz seminorm.
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Wasserstein GAN

• Such formulation allows to formulate the problem as

G∗ = argmin
G

W(pdata, pG)

= argmin
G

max
∥D∥L≤1

(
EX∼pdata [D(X)]− EXG∼pG [D(XG)]

) (7)

• The main difficulty here is to be able to optimize D while restricted to
the condition ∥D∥L ≤ 1.

Generative Adversarial Networks 11 / 17



Wasserstein GAN

• The original way of training is by clipping the weights of D.

• The alternative is known as WGAN-GP, because it adds a gradient
penalty, a smooth replace for the original discriminator search

D∗ = argmax
D

EX∼pdata [D(X)]−EXG∼pG [D(XG)]−λEXu∼pu [(∥∇D(Xu)∥−1)2] (8)

where pu is a uniformly sample between a real (pdata) and a fake one
(pG). That is Xu = UX+ (1− U)XG for U ∼ U[0, 1].
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Wasserstein GAN
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Wasserstein GAN
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Tips and Tricks

Train with labels:

• When available, using labels in any way in most cases results in a
dramatic improvement in the quality of the samples.

• This was observed while the community explored ways of
class-conditioning the distributions.

• Perhaps, the reason for improvement is that giving extra information
facilitates optimization during training.

• Classes also point out information that we humans tend to focus, and
therefore the model can develop a bias that pleases our perspective.

• Sometimes just by training the model class by class also helps
convergence.
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Tips and Tricks

Feature Matching:

• The idea is to improve statistical difference in the generator cost

∥Ex∼pdata f(X)− ExG∼pG f(XG)∥22 (9)

using an intermediate feature response instead of D(x).
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Tips and Tricks

Discriminator and generator network capacity

• Usually the discriminator is more complex than the generator. The
opposite can even make the game diverge.

• When doing model selecting, starting from your base model.

• Adding more neurons in a layer, usually doesnt harm the model,
and convergence is maintained.

• Adding more layers can go on the opposite direction, of actually
harming performance. (This might change if your architecture has
residual layer for example)

• Is important to identify the bottleneck for your application.
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