
Generative Adversarial Networks
Conditional GAN and Image translation

Daniel Yukimura

yukimura@impa.br

October 17, 2018

Generative Adversarial Networks (GANs)

Review:
We have two neural networks competing

• Generator: G : H → X .

• Discriminator: D : X → [0, 1]

We want to find the parameters that reach equilibrium for the minmax
game

G∗ = argmin
G

max
D

1

2
(E[logD(X)] + E[log (1− D(XG))]) . (1)

where XG = G(H) are the “fake” samples, given by the distribution induced
by G from pH.

Generative Adversarial Networks 2 / 38

Generative Adversarial Networks (GANs)

Review:

Generative Adversarial Networks 3 / 38

Conditional GANs

The majority of real applications involving generative models requires
some sort of conditioning, such as

• Segmentation,

• “in-painting”,

• Next frame prediction,

• Style Transfer.

Example: Our images have a label associated

(X, Y) ∼ pdata (2)

We learn to sample from p(X | Y).

Generative Adversarial Networks Conditional GANs 4 / 38

Conditional GANs

The Conditional GAN (CGAN) approach proposed by Mirza and Osidero
(2014), consists on allowing both networks, G and D, to directly carry the
extra information.

• We consider a condition as an event coming from a related random
variable E = [Y = y], y ∈ Y , where y could represent

• class label
• encoded text sentence
• matrix of pixels
• other...

• Adversarial value function:

v(G,D) = E(X,Y)∼pdata [logD(X|Y)] + E Y∼pY
H∼pH

[log (1− D(G(H|Y)|Y))]. (3)

Generative Adversarial Networks Conditional GANs 5 / 38

Conditional GANs

Generative Adversarial Networks Conditional GANs 6 / 38

Conditioanl GANs

Example: MNIST
In this example we want to generate handwriting digits conditioned on the
class they belong y ∈ {0, 1, . . . , 9}:

class cond_Generator(nn.Module):
def __init__(self, l_dim=128, z_dim=100, y_dim=10):

super(cond_Generator, self).__init__()
self.layer1_z = nn.Sequential(## 1x1 to 4x4

nn.ConvTranspose2d(z_dim, l_dim*2, 4, 1, 0),
nn.BatchNorm2d(l_dim*2),
nn.ReLU())

...

Generative Adversarial Networks Conditional GANs 7 / 38

Conditional GANs

...
self.layer1_y = nn.Sequential(

nn.ConvTranspose2d(y_dim, l_dim*2, 4, 1, 0),
nn.BatchNorm2d(l_dim*2),
nn.ReLU())

self.layer2 = nn.Sequential(## 4x4 to 7x7
nn.ConvTranspose2d(l_dim*4, l_dim*2, 3, 2, 1),
nn.BatchNorm2d(l_dim*2),
nn.ReLU())

...

Generative Adversarial Networks Conditional GANs 8 / 38

Conditional GANs

...
self.layer3 = nn.Sequential(## 7x7 to 14x14

nn.ConvTranspose2d(l_dim*2, l_dim, 4, 2, 1),
nn.BatchNorm2d(l_dim),
nn.ReLU())

self.layer4 = nn.Sequential(## 14x14 to 28x28
nn.ConvTranspose2d(l_dim, 1, 4, 2, 1),
nn.Tanh())

def weight_init(self, mean, std):
for m in self._modules:

normal_init(self._modules[m], mean, std)
...

Generative Adversarial Networks Conditional GANs 9 / 38

Conditional GANs

...
def forward(self, z, y):

z = self.layer1_z(z)
y = self.layer1_y(y)
out = torch.cat([z,y],1)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
return out

Generative Adversarial Networks Conditional GANs 10 / 38

Conditional GANs

class cond_Discriminator(nn.Module):
def __init__(self, l_dim=128, y_dim=10):

super(cond_Discriminator, self).__init__()
self.layer1_x = nn.Sequential(## 28x28 to 14x14

nn.Conv2d(1, int(l_dim/2), 4, 2, 1),
nn.LeakyReLU(0.2))

self.layer1_y = nn.Sequential(
nn.Conv2d(y_dim, int(l_dim/2), 4, 2, 1),
nn.LeakyReLU(0.2))

Generative Adversarial Networks Conditional GANs 11 / 38

Conditional GANs

self.layer2 = nn.Sequential(## 14x14 to 7x7
nn.Conv2d(l_dim, l_dim*2, 4, 2, 1),
nn.BatchNorm2d(l_dim*2),
nn.LeakyReLU(0.2)

)
self.layer3 = nn.Sequential(## 7x7 to 4x4

nn.Conv2d(l_dim*2, l_dim*4, 3, 2, 1),
nn.BatchNorm2d(l_dim*4),
nn.LeakyReLU(0.2))

self.layer4 = nn.Sequential(
nn.Conv2d(l_dim*4, 1, 4),
nn.Sigmoid())

Generative Adversarial Networks Conditional GANs 12 / 38

Conditional GANs

def weight_init(self, mean, std):
for m in self._modules:

normal_init(self._modules[m], mean, std)
def forward(self, x, y):

x = self.layer1_x(x)
y = self.layer1_y(y)
out = torch.cat([x,y],1)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
return out

Generative Adversarial Networks Conditional GANs 13 / 38

Conditional GANs

Generative Adversarial Networks Conditional GANs 14 / 38

Conditional GANs

for epoch in range(n_epochs):
for idx, (img_batch, y_batch) in enumerate(train_loader):

Training Discriminator
x = to_cuda(img_batch)
y = to_cuda(onehot_fill[y_batch])
x_disc = D(x,y)
D_x_loss = criterion(x_disc, D_labels)

z = to_cuda(torch.randn(mbatch_size, z_dim).view(-1,100,1,1))
y_rd = (torch.rand(mbatch_size,1)*10).type(torch.LongTensor).squeeze()
y_label = to_cuda(onehot_encoder[y_rd])
y_fill = to_cuda(onehot_fill[y_rd])

...

Generative Adversarial Networks Conditional GANs 15 / 38

Conditional GANs

...
z_disc = D(G(z,y_label),y_fill)
D_z_loss = criterion(z_disc, D_fakes).squeeze()
D_loss = D_x_loss + D_z_loss
D.zero_grad()
D_loss.backward()
D_opt.step()

...

Generative Adversarial Networks Conditional GANs 16 / 38

Conditional GANs

...
Training Generator
z = to_cuda(torch.randn(mbatch_size, z_dim).view(-1,100,1,1))
y_rd = (torch.rand(mbatch_size,1)*10).type(torch.LongTensor).squeeze()
y_label = to_cuda(onehot_encoder[y_rd])
y_fill = to_cuda(onehot_fill[y_rd])
z_disc = D(G(z,y_label),y_fill)
G_loss = criterion(z_disc, D_labels)

D.zero_grad()
G.zero_grad()
G_loss.backward()
G_opt.step()

...

Generative Adversarial Networks Conditional GANs 17 / 38

Conditional GANs

Generative Adversarial Networks Conditional GANs 18 / 38

Latent Space Optimization

An alternative for conditioning GANs

• First train G and D as usual, and define

• Contextual Loss:

Lcontextual(z) = ∥M⊙ G(z)−M⊙ y∥1 (4)

• Perceptual Loss:

Lperceptual(z) = log(1− D(G(z)) (5)

Generative Adversarial Networks Conditional GANs 19 / 38

Yeh et al. 2016

Latent Space Optimization

An alternative for conditioning GANs

• First train G and D as usual, and define

• Contextual Loss:

Lcontextual(z) = ∥M⊙ G(z)−M⊙ y∥1 (4)

• Perceptual Loss:

Lperceptual(z) = log(1− D(G(z)) (5)

Generative Adversarial Networks Conditional GANs 19 / 38

Yeh et al. 2016

Latent Space Optimization

An alternative for conditioning GANs

• First train G and D as usual, and define

• Contextual Loss:

Lcontextual(z) = ∥M⊙ G(z)−M⊙ y∥1 (4)

• Perceptual Loss:

Lperceptual(z) = log(1− D(G(z)) (5)

Generative Adversarial Networks Conditional GANs 19 / 38

Yeh et al. 2016

Latent Space Optimization

An alternative for conditioning GANs

• Find the best z ∈ Z that gives the best sample for the condition.

ẑ = argmin
z

(
Lcontextual(z) + Lperceptual(z)

)
(6)

• Then reconstruct

xreconstructed = M⊙ y+ (M−1)⊙ G(ẑ) (7)

Generative Adversarial Networks Conditional GANs 20 / 38

Yeh et al. 2016

Latent Space Optimization

An alternative for conditioning GANs

• Find the best z ∈ Z that gives the best sample for the condition.

ẑ = argmin
z

(
Lcontextual(z) + Lperceptual(z)

)
(6)

• Then reconstruct

xreconstructed = M⊙ y+ (M−1)⊙ G(ẑ) (7)

Generative Adversarial Networks Conditional GANs 20 / 38

Yeh et al. 2016

Latent Space Optimization

Generative Adversarial Networks Conditional GANs 21 / 38

Yeh et al. 2016

Image-to-Image translation

Formulation

• We want to learn mapping functions from two domains X and Y
given training set of images.

Generative Adversarial Networks Image-to-Image translation 22 / 38

Image-to-Image translation

Formulation

• We want to learn mapping functions from two domains X and Y
given training set of images.

• {xi}Ni=1 from X and

• {yj}Mj=1 from Y .
• Now we want mappings between distributions X ∼ pX in X and a
distribution Y ∼ pY in Y .

Generative Adversarial Networks Image-to-Image translation 23 / 38

Image-to-Image translation

Pixel-to-Pixel
Conditioning GANs similarly to the original form:

Generative Adversarial Networks Image-to-Image translation 24 / 38

Isola et al. 2016

Image-to-Image translation

Pixel-to-Pixel
Using conditional GANs:

• Train, as usual, a conditional GAN to approximate y ≈ G(z|x).
• Since this is a very complex condition, sometimes we pair it with
a regularized loss (a pixel-wise condition)

LL1(G) = Ex,y∼pdata
z∼pZ

∥y− G(z|x)∥ (8)

building the minmax game

G∗ = argmin
G

max
D

LCGAN(G,D) + LL1(G). (9)

Generative Adversarial Networks Image-to-Image translation 25 / 38

Isola et al. 2016

Image-to-Image translation

Pixel-to-Pixel
Using conditional GANs:

• Train, as usual, a conditional GAN to approximate y ≈ G(z|x).
• Since this is a very complex condition, sometimes we pair it with
a regularized loss (a pixel-wise condition)

LL1(G) = Ex,y∼pdata
z∼pZ

∥y− G(z|x)∥ (8)

building the minmax game

G∗ = argmin
G

max
D

LCGAN(G,D) + LL1(G). (9)

Generative Adversarial Networks Image-to-Image translation 25 / 38

Isola et al. 2016

Image-to-Image translation

From the paper of Isola et al. 2016:

• The result is improved by adding skip connections, to the generator,
from layer i to L− i, this network is known as U− net.

Generative Adversarial Networks Image-to-Image translation 26 / 38

Image-to-Image translation

From the paper of Isola et al. 2016:

• Randomness is added to the process by using dropout instead of
adding a sample z ∼ pZ.

Generative Adversarial Networks Image-to-Image translation 27 / 38

Image-to-Image translation

From the paper of Isola et al. 2016:

• The discriminator has the PatchGAN architecture, the output is a pixel
matrix in [0, 1]N×N representing how believable each corresponding
patch is.

Generative Adversarial Networks Image-to-Image translation 28 / 38

Image-to-Image translation

CycleGAN
Unpaired Image-to-Image translation (Zhu et al. 2017)

Generative Adversarial Networks Image-to-Image translation 29 / 38

Image-to-Image translation

CycleGAN
Unpaired Image-to-Image translation (Zhu et al. 2017)

• In this approach we build two maps

G : X → Y and F : Y → X (10)

i.e. we want a map from distribution pX to pY and also an inverse one.

• We also end up with two distinct discriminators

DX : X → [0, 1] and DY : Y → [0, 1]. (11)

For x ∼ pX and y ∼ pY, DX distinguish between x and F(y) and DY

between y and G(x)

Generative Adversarial Networks Image-to-Image translation 30 / 38

Image-to-Image translation

CycleGAN
Unpaired Image-to-Image translation (Zhu et al. 2017)

• In this approach we build two maps

G : X → Y and F : Y → X (10)

i.e. we want a map from distribution pX to pY and also an inverse one.

• We also end up with two distinct discriminators

DX : X → [0, 1] and DY : Y → [0, 1]. (11)

For x ∼ pX and y ∼ pY, DX distinguish between x and F(y) and DY

between y and G(x)

Generative Adversarial Networks Image-to-Image translation 30 / 38

Image-to-Image translation

CycleGAN
Unpaired Image-to-Image translation (Zhu et al. 2017)

Generative Adversarial Networks Image-to-Image translation 31 / 38

Image-to-Image translation

CycleGAN

• We end with a loss for G and other for F

LGAN(G,DY, X, Y) = Ey∼pY logDY(y) + Ex∼pX log (1− DY(G(x))) (12)

The other is similar taking values as LGAN(F,DX, Y, X).

• Cycle consistency loss

Lcyc(G, F) = Ex∼pX∥F(G(x))− x∥1 + Ey∼py∥G(F(y))− y∥1 (13)

Generative Adversarial Networks Image-to-Image translation 32 / 38

Image-to-Image translation

CycleGAN

• We end with a loss for G and other for F

LGAN(G,DY, X, Y) = Ey∼pY logDY(y) + Ex∼pX log (1− DY(G(x))) (12)

The other is similar taking values as LGAN(F,DX, Y, X).

• Cycle consistency loss

Lcyc(G, F) = Ex∼pX∥F(G(x))− x∥1 + Ey∼py∥G(F(y))− y∥1 (13)

Generative Adversarial Networks Image-to-Image translation 32 / 38

Image-to-Image translation

CycleGAN

• Cycle consistency loss

Generative Adversarial Networks Image-to-Image translation 33 / 38

Image-to-Image translation

CycleGAN

• Finally our full objective is

L(G, F,DX,DY) = LGAN(G,DY, X, Y) + LGAN(F,DX, Y, X)

+ Lcyc(G, F)

(14)

• Our minmax game is now given by

G∗, F∗ = argmin
G,F

max
DX,DY

L(G, F,DX,DY). (15)

Generative Adversarial Networks Image-to-Image translation 34 / 38

Image-to-Image translation

CycleGAN

• Finally our full objective is

L(G, F,DX,DY) = LGAN(G,DY, X, Y) + LGAN(F,DX, Y, X)

+ Lcyc(G, F)

(14)

• Our minmax game is now given by

G∗, F∗ = argmin
G,F

max
DX,DY

L(G, F,DX,DY). (15)

Generative Adversarial Networks Image-to-Image translation 34 / 38

Image-to-Image translation

CycleGAN

Generative Adversarial Networks Image-to-Image translation 35 / 38

Image-to-Image translation

CycleGAN

Generative Adversarial Networks Image-to-Image translation 36 / 38

Image-to-Image translation

CycleGAN

Generative Adversarial Networks Image-to-Image translation 37 / 38

Image-to-Image translation

Code in PyTorch:

• pix-to-pix and CycleGAN

• Pixel-to-Pixel HD

• Video-to-Video Synthesis

• CycleGAN - Colaboratory (tensorflow)

Generative Adversarial Networks Image-to-Image translation 38 / 38

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/NVIDIA/pix2pixHD
https://github.com/NVIDIA/vid2vid
https://colab.research.google.com/drive/1Enc-pKlP4Q3cimEBfcQv0B_6hUvjVL3o?sandboxMode=true

	Conditional GANs
	Image-to-Image translation

