Generative Adversarial Networks

Conditional GAN and Image translation

Daniel Yukimura

yukimura@impa.br

October 17, 2018

Generative Adversarial Networks (GANs)

Review:
We have two neural networks competing

« Generator: G: H — X.
- Discriminator: D : X — [0, 1]

We want to find the parameters that reach equilibrium for the minmax
game

G* = argmcjnmbaxé (E[log D(X)] + E[log (1 — D(Xg))]) - m

where X¢ = G(H) are the “fake” samples, given by the distribution induced
by G from py.

Generative Adversarial Networks 2/38

Generative Adversarial Networks (GANs)

Review:
Real
Samples
1. Learn how to tell apart
Latent fake data from true data
Learn data

o 18D
[Correct?

D

Discriminator]

distribution

G

Generator

Generated
Fake
Samples

Fine Tune Training

Generative Adversarial Networks 3/38

Conditional GANs

The majority of real applications involving generative models requires
some sort of conditioning, such as

- Segmentation,
« “in-painting”,
- Next frame prediction,
- Style Transfer.
Example: Our images have a label associated

(X,Y) ~ Pdata)

We learn to sample from p(X | Y).

Generative Adversarial Networks 4/38

Conditional GANs

The Conditional GAN (CGAN) approach proposed by Mirza and Osidero
(2014), consists on allowing both networks, G and D, to directly carry the
extra information.

« We consider a condition as an event coming from a related random
variable E = [Y =y|, y €), where y could represent

. class label

- encoded text sentence
+ matrix of pixels

. other...

« Adversarial value function:

V(G, D) = E(x)~pye [log DXIY)] +]EFY,:ZY [log (1 = D(G(H)[V))]. ~ (3)

Generative Adversarial Networks 5/38

Conditional GANs

Discriminator

IEE e

(real image & label)

Generator

(latent space & label)

Generative Adversarial Networks 6/38

Conditioanl GANs

Example: MNIST

In this example we want to generate handwriting digits conditioned on the
class they belongy € {0,1,...,9}:

class cond_Generator (nn.Module):
def __init__(self, 1_dim=128, z_dim=100, y_dim=10):
super (cond_Generator, self).__init__()
self.layerl_z = nn.Sequential (## Izl to 4z4
nn.ConvTranspose2d(z_dim, 1_dim*2, 4, 1, 0),
nn.BatchNorm2d (1_dim*2) ,
nn.ReLU())

Generative Adversarial Networks 7/38

Conditional GANs

self.layerl_y = nn.Sequential(
nn.ConvTranspose2d(y_dim, 1_dim*2, 4, 1, 0),
nn.BatchNorm2d (1_dim*2) ,
nn.ReLU())

self.layer2 = nn.Sequential (## 4xz/ to 7z7
nn.ConvTranspose2d(1_dim*4, 1_dim*2, 3, 2, 1),
nn.BatchNorm2d (1_dim*2),
nn.ReLU())

Generative Adversarial Networks 8/38

Conditional GANs

self.layer3 = nn.Sequential (## 7z7 to 14zl
nn.ConvTranspose2d(1_dim*2, 1_dim, 4, 2, 1),
nn.BatchNorm2d(1_dim),
nn.ReLU())

self.layer4 = nn.Sequential (## 14z14 to 28z28
nn.ConvTranspose2d(1_dim, 1, 4, 2, 1),
nn.Tanh())

def weight_init(self, mean, std):
for m in self._modules:

normal_init(self._modules[m], mean, std)

Generative Adversarial Networks 9/38

Conditional GANs

def forward(self, z, y):
z = self.layerl_z(z)
y = self.layerl_y(y)
out = torch.cat([z,y],1)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)

return out

Generative Adversarial Networks 10/ 38

Conditional GANs

class cond_Discriminator (an.Module):
def __init__(self, 1_dim=128, y_dim=10):

super (cond_Discriminator, self).__init__()

self.layerl_x = nn.Sequential (## 28228 to 14z1/
nn.Conv2d(1, int(1_dim/2), 4, 2, 1),
nn.LeakyReLU(0.2))

self.layerl_y = nn.Sequential(
nn.Conv2d(y_dim, int(1_dim/2), 4, 2, 1),
nn.LeakyReLU(0.2))

Generative Adversarial Networks 1/38

Conditional GANs

self.layer2 = nn.Sequential (## 14z14 to 7z7
nn.Conv2d(1_dim, 1_dimx*2, 4, 2, 1),
nn.BatchNorm2d (1_dim*2) ,
nn.LeakyReLU(0.2)

)

self.layer3 = nn.Sequential (## 7z7 to 4z
nn.Conv2d(1_dim*2, 1_dim*4, 3, 2, 1),
nn.BatchNorm2d (1_dim*4) ,
nn.LeakyReLU(0.2))

self.layer4 = nn.Sequential(
nn.Conv2d(1_dim*4, 1, 4),
nn.Sigmoid())

Generative Adversarial Networks 12/ 38

Conditional GANs

def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
def forward(self, x, y):
x = self.layerl_x(x)

y = self.layerl_y(y)

out = torch.cat([x,y],1)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)

return out

Generative Adversarial Networks 13/38

Conditional GANs

10 Ty

% Full conv lyI
My

|| Convl

Generative Adversarial Networks

] Full conv 2

Full conv 3

Full conv 4

Fullconv 5

o€ (0,1)

14/ 38

Conditional GANs

for epoch in range(n_epochs):
for idx, (img_batch, y_batch) in enumerate(train_loader):
Training Discriminator
x = to_cuda(img_batch)
y = to_cuda(onehot_£fill[y_batch])
x_disc = D(x,y)

D_x_loss = criterion(x_disc, D_labels)

z = to_cuda(torch.randn(mbatch_size, z_dim).view(-1,100,1,1))

y_rd = (torch.rand(mbatch_size,1)*10).type(torch.LongTensor) .squeez
y_label = to_cuda(onehot_encoder[y_rd])

y_fill = to_cuda(onehot_£ill[y_rd])

Generative Adversarial Networks 15 /38

Conditional GANs

z_disc = D(G(z,y_label),y_£fill)

D_z_loss = criterion(z_disc, D_fakes).squeeze()
D_loss = D_x_loss + D_z_loss

D.zero_grad()

D_loss.backward()

D_opt.step()

Generative Adversarial Networks 16 / 38

Conditional GANs

Training Generator

z = to_cuda(torch.randn(mbatch_size, z_dim).view(-1,100,1,1))

y_rd = (torch.rand(mbatch_size,1)*10).type(torch.LongTensor) .squeez
y_label = to_cuda(onehot_encoder [y_rd])

y_fill = to_cuda(onehot_£ill[y_rd])

z_disc = D(G(z,y_label),y_£fill)

G_loss = criterion(z_disc, D_labels)

D.zero_grad()
G.zero_grad()
G_loss.backward()
G_opt.step()

Generative Adversarial Networks 17/ 38

Y changes

[72)
2
<
&)
®

e

)
=
o

=

)
Q

Latent Space Optimization

An alternative for conditioning GANs

- First train G and D as usual, and define

Yeh et al. 2016

Generative Adversarial Networks 19 /38

Latent Space Optimization

An alternative for conditioning GANs

- First train G and D as usual, and define
- Contextual Loss:

Econtextual(z) = ||M © G(Z) -M Q)’Hl (4)

Yeh et al. 2016

Generative Adversarial Networks 19 /38

Latent Space Optimization

An alternative for conditioning GANs

- First train G and D as usual, and define
- Contextual Loss:

Econtextual(z) = ||M © G(Z) -M Q)’Hl (4)

- Perceptual Loss:

£perceptual(z) = Iog(l - D(G(Z)) (5)

Yeh et al. 2016

Generative Adversarial Networks 19 /38

Latent Space Optimization

An alternative for conditioning GANs

« Find the best z € Z that gives the best sample for the condition.

z= argmzin (ﬁcontextual (z) + Eperceptual (Z)) (6)

Yeh et al. 2016

Generative Adversarial Networks 20/38

Latent Space Optimization

An alternative for conditioning GANs

« Find the best z € Z that gives the best sample for the condition.
z= argmzin (ﬁcontextual (z) + Eperceptual (Z)) (6)
« Then reconstruct

Xreconstructed = M ®y —"_ (M_l) @ C(i) (7)

Yeh et al. 2016

Generative Adversarial Networks 20/38

=
S
2
a
e
=
fus)
=
)
Q
Q
5
=%
9]
Sd
=
0
)
<
]

Yeh et al. 2016

21/38

Generative Adversarial Networks

Image-to-Image translation

Formulation

- We want to learn mapping functions from two domains & and Y
given training set of images.

Zebras Horses

Generative Adversarial Networks 22/ 38

Image-to-Image translation

Formulation

- We want to learn mapping functions from two domains X and Y
given training set of images.

« {x;}¥, from X and

. {yj}j"il from).

- Now we want mappings between distributions X ~ py in X and a
distribution Y ~ py in).

Generative Adversarial Networks 23 /38

Image-to-Image translation

Pixel-to-Pixel
Conditioning GANs similarly to the original form:

Labels to Facade BW to Color

Labels to Street Scene

i it itput
ey Aerial to Map outpu
output
Edges to Photo
input output output

Isola et al. 2016

Generative Adversarial Networks 24 [38

Image-to-Image translation

Pixel-to-Pixel
Using conditional GANSs:
- Train, as usual, a conditional GAN to approximate y ~ G(z|x).

Isola et al. 2016

Generative Adversarial Networks 25/ 38

Image-to-Image translation

Pixel-to-Pixel
Using conditional GANSs:
- Train, as usual, a conditional GAN to approximate y ~ G(z|x).

- Since this is a very complex condition, sometimes we pair it with
a regularized loss (a pixel-wise condition)

L11(G) = Exy~paually — G(z[¥) (8)
Z~pz
building the minmax game

G = argmcin Hl[E)lX ECGAN(G; D) + ﬁLl(G). (9)

Isola et al. 2016

Generative Adversarial Networks 25/ 38

Image-to-Image translation

From the paper of Isola et al. 2016:

« The result is improved by adding skip connections, to the generator,
from layer i to L — i, this network is known as U — net.

Posit .
Real or fake pair? Real o fake pair?
D D %
—
. . :
H
=N
G tries to synthesize fake
images that fool D
1
D tries to identify the fakes
U-Net
Discriminator Generator

Generative Adversarial Networks 26 [38

Image-to-Image translation

From the paper of Isola et al. 2016:

« Randomness is added to the process by using dropout instead of
adding a sample z ~ p;.

Positive examples ~ Negative examples

Real or fake pair? Real or fake pair?
—
. - T
4
G % i
G tries to synthesize fake
images that fool D
—

D tries to identify the fakes

U-Net

Discriminator Generator

Generative Adversarial Networks 27 /38

Image-to-Image translation

From the paper of Isola et al. 2016:

 The discriminator has the PatchGAN architecture, the output is a pixel
matrix in [0, 1]N*N representing how believable each corresponding
patch is.

Real or fake pair? Real or fake pair?

am
=7 I

G tries to synthesize fake
images that fool D

D tries to identify the fakes

U-Net

Discriminator Generator

Generative Adversarial Networks 28 /38

Image-to-Image translation

CycleGAN
Unpaired Image-to-Image translation (Zhu et al. 2017)

Zebras _ Horses Summer T Winter

zebra — horse summer — winter

winter —> summer

horse —» zebra

Generative Adversarial Networks 29 /38

Image-to-Image translation

CycleGAN
Unpaired Image-to-Image translation (Zhu et al. 2017)

+ In this approach we build two maps
G:X—=YandF:Y = X (10)

i.e. we want a map from distribution px to py and also an inverse one.

Generative Adversarial Networks 30/38

Image-to-Image translation

CycleGAN
Unpaired Image-to-Image translation (Zhu et al. 2017)

+ In this approach we build two maps
G: X =>YandF:Y = X (10)
i.e. we want a map from distribution px to py and also an inverse one.
+ We also end up with two distinct discriminators
Dx: X — [0,1] and Dy : Y — [0, 1]. (1)

For x ~ px and y ~ py, Dy distinguish between x and F(y) and Dy
between y and G(x)

Generative Adversarial Networks

Image-to-Image translation

CycleGAN
Unpaired Image-to-Image translation (Zhu et al. 2017)

/‘*\

va
|
Dx Dy

Generative Adversarial Networks 31/38

Image-to-Image translation

CycleGAN

- We end with a loss for G and other for F
»CGAN(C; Dy, X, Y) = EprY log Dy(y) + EXNPX log (1 — Dy(G(X))) (12)

The other is similar taking values as L¢an(F, Dx, Y, X).

Generative Adversarial Networks 32/38

Image-to-Image translation

CycleGAN

- We end with a loss for G and other for F
»CGAN(C; Dy, X, Y) = EprY log Dy(y) + EprX log (1 — Dy(G(X))) (12)

The other is similar taking values as L¢an(F, Dx, Y, X).
- Cycle consistency loss

Leye(G, F) = Exopy [F(G(X)) = X[[1 + Eyp, [[GFY)) =yl (13)

Generative Adversarial Networks 32/38

Image-to-Image translation

CycleGAN

- Cycle consistency loss

G G
7 N ~ N 7~ -
F F
X vl|X Y .
R c-ycle-cons‘lstency
cycle-c?;iistency" \. _> -_:‘.\ ----- o loss
(0) (¢)

Generative Adversarial Networks 33 /38

Image-to-Image translation

CycleGAN

- Finally our full objective is

‘C(Ga F7 DX, DY) - EGAN(GvDYvX7 Y) + ECAN(Fy DXaYaX) ()
14

+ Leye(G, F)

Generative Adversarial Networks 34 /38

Image-to-Image translation

CycleGAN

- Finally our full objective is

‘C(Ga F7 DX, DY) - EGAN(GvDYvX7 Y) + ECAN(Fy DXaYaX)

(14)
+ Leye(G, F)
« Our minmax game is now given by
G*,F* = argmin max £(G, F, Dx, Dy). (15)

G,F Dyx,Dy

Generative Adversarial Networks 34 /38

Image-to-Image translation

CycleGAN

Cezanne Ukiyo-¢
oLoAve :

- ‘;\“:.-': 'Jb'
RECERLTTTY

Generative Adversarial Networks 35/ 38

Image-to-Image translation

CycleGAN

Generative Adversarial Networks

Image-to-Image translation

CycleGAN

Dog -> Cat Cat ->dog

Bicycle -> Motorcycle

Generative Adversarial Networks 37/ 38

Image-to-Image translation

Code in PyTorch:
« pix-to-pix and CycleGAN
« Pixel-to-Pixel HD
« Video-to-Video Synthesis
+ CycleGAN - Colaboratory (tensorflow)

Generative Adversarial Networks 38 /38

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/NVIDIA/pix2pixHD
https://github.com/NVIDIA/vid2vid
https://colab.research.google.com/drive/1Enc-pKlP4Q3cimEBfcQv0B_6hUvjVL3o?sandboxMode=true

	Conditional GANs
	Image-to-Image translation

